\(\dfrac{abc}{bc}\) = \(\dfrac{bca}{ca} = \dfrac{cab}{ab}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2024

Ta có:

\(\dfrac{\overline{abc}}{\overline{bc}}=\dfrac{\overline{bca}}{\overline{ca}}=\dfrac{\overline{cab}}{\overline{ab}}\)

\(\Rightarrow\dfrac{100a+\overline{bc}}{\overline{bc}}=\dfrac{100b+\overline{ca}}{\overline{ca}}=\dfrac{100c+\overline{ab}}{\overline{ab}}\)

\(\Rightarrow\dfrac{100a}{\overline{bc}}+1=\dfrac{100b}{\overline{ca}}+1=\dfrac{100a}{\overline{ab}}+1\)

\(\Rightarrow\dfrac{100a}{\overline{bc}}=\dfrac{100b}{\overline{ca}}=\dfrac{100c}{\overline{ab}}\)

\(\Rightarrow\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}\)

Đặt: \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}=k\)

\(\Rightarrow a=k\overline{bc};b=k\overline{ca};c=k\overline{ab}\)

Ta có: \(\dfrac{a+b+c}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{k\overline{bc}+k\overline{ca}+k\overline{ab}}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{k\left(\overline{bc}+\overline{ca}+\overline{ab}\right)}{\overline{bc}+\overline{ca}+\overline{ab}}=k\)

Nên: \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}=\dfrac{a+b+c}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{a+b+c}{10b+c+10c+a+10a+b}=\dfrac{a+b+c}{11\left(a+b+c\right)}=\dfrac{1}{11}\)

\(\Rightarrow k=\dfrac{1}{11}\) 

Giá trị của biểu thức P là:

\(P=\dfrac{a}{\overline{bc}}+\dfrac{b}{\overline{ca}}+\dfrac{c}{\overline{ab}}=k+k+k=\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}=\dfrac{3}{11}\)

Câu 1: 

a: AC=5-3=2(cm)

b: Trên tia CD, ta có: CA<CD

nên điểm A nằm giữa hai điểm C và D

mà CA=1/2CD

nên A là trung điểm của CD

10 tháng 3 2017

Bài 1 thì ab là một số.

Cách tiểu học :

a) \(3\frac{9}{10}>2\frac{9}{10}\) ( Vì phần nguyên 3 > 2, phần phân số bằng nhau )

b) \(5\frac{1}{10}=\frac{51}{10}\), \(2\frac{9}{10}=\frac{29}{10}\)\(\frac{51}{10}>\frac{29}{10}\)

nên : \(5\frac{1}{10}>2\frac{9}{10}\)

c) \(3\frac{4}{10}=3\frac{2}{5}\) ( vì phần nguyên \(3=3\) và phần phân số \(\frac{4}{10}=\frac{2}{5}\) )

d) \(3\frac{4}{10}=3\frac{2}{5}\) ( vì phần nguyên \(3=3\) và phần phân số \(\frac{4}{10}=\frac{2}{5}\) )

4 tháng 8 2019

Nguyễn Ngọc Thiện làm cách THCS nha

29 tháng 3 2018

. Ta có :

\(\dfrac{1}{11}>\dfrac{1}{20}\)

\(\dfrac{1}{12}>\dfrac{1}{20}\)

.................

\(\dfrac{1}{19}>\dfrac{1}{20}\)

\(\dfrac{1}{20}=\dfrac{1}{20}\)

\(\Leftrightarrow\dfrac{1}{11}+\dfrac{1}{12}+......+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+.....+\dfrac{1}{20}\)

\(\Leftrightarrow S>\dfrac{1}{20}.10\)

\(\Leftrightarrow S>\dfrac{1}{2}\)

2. \(\dfrac{x}{12}=\dfrac{-1}{24}-\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{x}{12}=-\dfrac{1}{6}\)

\(\Leftrightarrow6x=-12\)

\(\Leftrightarrow x=-2\)

Vậy ...

3. \(\dfrac{2}{5.7}+\dfrac{2}{7.9}+........+\dfrac{2}{19.21}\)

\(=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+......+\dfrac{1}{19}-\dfrac{1}{21}\)

\(=\dfrac{1}{5}-\dfrac{1}{21}\)

\(=\dfrac{16}{105}\)

29 tháng 3 2018

Mơn bn dthw nhìu nek ><

30 tháng 12 2017

Biết   \(\dfrac{a^2 + b^2}{c^2 + d^2}=\dfrac{ab}{cd}\) với a,b,c,d khác 0. Chứng minh rằng:

\(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc\(\dfrac{a}{b}=\dfrac{d}{c}\) cái \(\dfrac{a}{b}=\dfrac{c}{d}\)thì mình chứng minh được rồi còn cái\(\dfrac{a}{b}=\dfrac{d}{c}\)thì chưa mong các bạn giúp ạ

30 tháng 6 2017

a ) \(5\left(x^2\right)+7x+2\)

\(\Leftrightarrow5x^2+7x+2=0\)

\(\Leftrightarrow5x^2+5x+2x+2=0\)

\(\Leftrightarrow\left(5x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{5}\\x=-1\end{matrix}\right.\)

Vậy .............

b ) \(\dfrac{x+1}{17}+\dfrac{x+2}{16}=\dfrac{x+3}{15}+\dfrac{x+4}{14}\)

\(\Leftrightarrow\dfrac{x+1}{17}+1+\dfrac{x+2}{16}+1=\dfrac{x+3}{15}+1+\dfrac{x+4}{14}+1\)

\(\Leftrightarrow\dfrac{x+18}{17}+\dfrac{x+18}{16}=\dfrac{x+18}{15}+\dfrac{x+18}{14}\)

\(\Leftrightarrow\dfrac{x+18}{17}+\dfrac{x+18}{16}-\dfrac{x+18}{15}-\dfrac{x+18}{14}=0\)

\(\Leftrightarrow\left(x+18\right)\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)=0\)

\(\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)\ne0\)

Ta có : \(x+18=0\Leftrightarrow x=-18\)

Vậy ......

c ) \(\dfrac{x-1}{x-3}=\dfrac{x-4}{x-7}\)

\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=\left(x-3\right)\left(x-4\right)\)

\(\Leftrightarrow x^2-7x-x+7=x^2-4x-3x+12\)

\(\Leftrightarrow-x=5\)

\(\Leftrightarrow x=-5\)

Vậy ..

30 tháng 6 2017

cảm ơn nhiều nha

2.A=\(\dfrac{43.11}{2011^{2013}}\)+\(\dfrac{79}{2011^{2013}}\)=\(\dfrac{43.11+79}{2011^{2013}}\)

B=\(\dfrac{79.11}{2011^{2013}}\)+\(\dfrac{43}{2011^{2013}}\)=\(\dfrac{79.11+43}{2011^{2013}}\)

Ta có: 43.11+79=43.(10+1)+79=43.10+43+79=430+122

79.11+43=79.(10+1)+43=79.10+79+43=790+122

Vì 430+122<790+122 nên 43.11+79<79.11+43 (1)

Mà 20112013<20112013 (2)

Từ (1) và (2) suy ra A<B

3. A=\(\dfrac{2010.2012}{2011.2011}\)

Vì B<1 nên B>\(\dfrac{2010}{2012}\)=\(\dfrac{2010.2012}{2012.2012}\)

Vì 2010.2012=2010.2012; 2011.2011<2012.2012 nên B>A

4. A=\(\dfrac{3n}{3\left(2n+1\right)}\)=\(\dfrac{3n}{6n+3}\)

Vì 6n+3=6n+3; 3n<3n+1 nên A<B

2 tháng 5 2017

Bài 1:

a)

\(\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{x-1}{9}=\dfrac{24}{9}\\ \Leftrightarrow x-1=24\\ x=24+1\\ x=25\)

b)

\(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{8}\\ \dfrac{3x}{7}+1=\dfrac{-1}{8}\cdot\left(-4\right)\\ \dfrac{3x}{7}+1=\dfrac{1}{2}\\ \dfrac{3x}{7}=\dfrac{1}{2}-1\\ \dfrac{3x}{7}=\dfrac{-1}{2}\\ 3x=\dfrac{-1}{2}\cdot7\\ 3x=\dfrac{-7}{2}\\ x=\dfrac{-7}{2}:3\\ x=\dfrac{-7}{6}\)

c)

\(x+\dfrac{7}{12}=\dfrac{17}{18}-\dfrac{1}{9}\\ x+\dfrac{7}{12}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{12}\\ x=\dfrac{1}{4}\)

d)

\(0,5x-\dfrac{2}{3}x=\dfrac{7}{12}\\ \dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{7}{12}\\ x\cdot\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{7}{12}\\ \dfrac{-1}{6}x=\dfrac{7}{12}\\ x=\dfrac{7}{12}:\dfrac{-1}{6}\\ x=\dfrac{-7}{2}\)

e)

\(\dfrac{29}{30}-\left(\dfrac{13}{23}+x\right)=\dfrac{7}{46}\\ \dfrac{29}{30}-\dfrac{13}{23}-x=\dfrac{7}{46}\\ \dfrac{277}{690}-x=\dfrac{7}{46}\\ x=\dfrac{277}{690}-\dfrac{7}{46}\\ x=\dfrac{86}{345}\)

f)

\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\\ \left(x-\dfrac{1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\\ x-\dfrac{1}{12}=\dfrac{7}{46}\cdot\dfrac{23}{12}\\ x-\dfrac{1}{12}=\dfrac{7}{24}\\ x=\dfrac{7}{24}+\dfrac{1}{12}\\ x=\dfrac{3}{8}\)

g)

\(\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\\ \dfrac{13}{21}+x=\dfrac{2}{7}\\ x=\dfrac{2}{7}-\dfrac{13}{21}\\ x=\dfrac{-1}{3}\)

h)

\(2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\end{matrix}\right.\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\ \dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{29}{24}\\ x=\dfrac{29}{24}:\dfrac{1}{2}\\ x=\dfrac{29}{12}\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\\ \dfrac{1}{2}x=\dfrac{-7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{-13}{24}\\ x=\dfrac{-13}{24}:\dfrac{1}{2}\\ x=\dfrac{-13}{12}\)

i)

\(3\cdot\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=0-\dfrac{1}{9}\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}:3\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{27}\\ \left(3x-\dfrac{1}{2}\right)^3=\left(\dfrac{-1}{3}\right)^3\\ \Leftrightarrow3x-\dfrac{1}{2}=\dfrac{-1}{3}\\ 3x=\dfrac{-1}{3}+\dfrac{1}{2}\\ 3x=\dfrac{1}{6}\\ x=\dfrac{1}{6}:3\\ x=\dfrac{1}{18}\)

Ta có: \(3\frac{1}{3}+7\frac{3}{17}\cdot\frac{2}{15}-2\frac{3}{17}\cdot\frac{2}{15}\)

\(=\frac{10}{3}+\frac{122}{17}\cdot\frac{2}{15}-\frac{37}{17}\cdot\frac{2}{15}\)

\(=\frac{10}{3}+\frac{244}{255}-\frac{74}{255}\)

\(=\frac{10}{3}+\frac{2}{3}=\frac{12}{3}=4\)