Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)
\(A=3.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(A=3.\left(1-\dfrac{1}{100}\right)\)
\(A=3.\dfrac{99}{100}=\dfrac{297}{100}\)
1.
`16 + (27 - 7.6 ) - (94 -7 - 27.99)`
`= 16+ 27 - 7.6 - 94 + 7 + 27.99`
`= 16 + 27(99 +1) - 7(6-1) - 94`
`= -78 + 27.100 - 7.5`
`= 2587`
2.
`A = 2/1.4 + 2/4.7 + 2/7.10 +...+ 2/97.100`
`A= 2(1/1.4 + 1/4.7 + 1/7.10 +...+1/97.100)`
`3A = 2 (3/1.4 + 3/4.7 + 3/7.10+...+ 3/97.100)`
`3/2 A = 1 - 1/4 + 1/4 - 1/7 +...+ 1/97 - 1/100`
`3/2A = 1 - 1/100`
`3/2 A= 99/100`
`A= 99/100 : 3/2`
`A=33/50`
Vậy `A= 33/50`
1.16+(27-7.6)-(94-7-27.99)=16+27-7.6-94+7+27.99
=(27+27.99)+(27+7-94)+16
=27.100-60+16
=2700-44=2656
2.A=\(\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)
=\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
=\(1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(S=\) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+.....+\dfrac{3}{97.100}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+....+\dfrac{1}{97}-\dfrac{1}{100}\)
(do \(\dfrac{n}{a.\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với mọi \(a\in N\)*)
\(S=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Vậy \(S=\dfrac{99}{100}\)
Chúc bạn học tốt!!!
Ta co:\(\)
\(A=\dfrac{2}{1.4}+\dfrac{2}{4.7}+.....+\dfrac{2}{73.76}\)
\(=>A=2.\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+....+\dfrac{1}{73.76}\right)\)
\(=>A=2.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+....+\dfrac{1}{73}-\dfrac{1}{76}\right)\)
\(=>A=2.\left(1-\dfrac{1}{76}\right)\)
\(=>A=2.\dfrac{75}{76}=\dfrac{2.75}{2.38}\)
\(=>A=\dfrac{75}{38}\)
Tick cho mk nha
a, \(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{37.39}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\)
\(=\dfrac{1}{3}-\dfrac{1}{39}\)
\(=\dfrac{12}{39}\)
Vậy \(A=\dfrac{12}{39}\)
b,\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{73.76}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{73}-\dfrac{1}{76}\)
\(=1-\dfrac{1}{76}\)
\(=\dfrac{75}{76}\)
Vậy \(B=\dfrac{75}{76}\)
a) Ta có :
\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+....................+\dfrac{2}{37.39}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...................+\dfrac{1}{37}-\dfrac{1}{39}\)
\(A=\dfrac{1}{3}-\dfrac{1}{39}=\dfrac{4}{13}\)
b) Ta có :
\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+..................+\dfrac{3}{73.76}\)
\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+..................+\dfrac{1}{73}-\dfrac{1}{76}\)
\(B=1-\dfrac{1}{76}=\dfrac{75}{76}\)
~ Học tốt ~
1/
a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)
b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993
2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993
2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993
2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993
2.(1 − 1/x+1) = 3984/1993
1 − 1/x + 1= 3984/1993 :2
1 − 1/x+1 = 1992/1993
1/x+1 = 1 − 1992/1993
1/x+1=1/1993
<=>x+1 = 1993
<=>x+1=1993
<=> x+1=1993
<=> x = 1993-1
<=> x = 1992
1.
E = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + \(\dfrac{3}{16.19}\) + \(\dfrac{3}{19.22}\)
E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... +\(\dfrac{1}{19}\) - \(\dfrac{1}{22}\)
E = 1 - \(\dfrac{1}{22}\)
E = \(\dfrac{21}{22}\)
2.
(x - 4)(x - 5) = 0
TH1:
x - 4 = 0 => x = 4
TH2:
x - 5 = 0 => x = 5
Vậy: x = 4 hoặc x = 5
\(\dfrac{2}{1.4}+\dfrac{2}{4.7}+...+\dfrac{2}{97.100}\)
=> \(\dfrac{2.3}{1.4}+\dfrac{2.3}{4.7}+...+\dfrac{2.3}{97.100}\)
=> \(2.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
=> \(2.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
=> \(2.\left(1-\dfrac{1}{100}\right)\)
=>\(2\).\(\dfrac{99}{100}\)
=\(\dfrac{99}{50}\)