\(\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{x^2-2x-3}\) giải...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{x^2-2x-3}\)

* x2 - 2x - 3 = x2- 3x + x - 3 = x(x-3 ) + ( x - 3) = ( x - 3 ) (  x + 1 )

\(\Leftrightarrow\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\left(ĐKXĐ:x\ne\pm3;x\ne-1\right)\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)+8\left(x+3\right)=2x\left(x+3\right)\)

\(\Leftrightarrow x^2-2x+1+8x+24=2x^2+6x\)

\(\Leftrightarrow-x^2+25=0\)

\(\Leftrightarrow x^2-25=0\Leftrightarrow\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

Vậy \(S=\left\{-5;5\right\}\)

8 tháng 6 2017

a) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}=1-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\)

ĐKXĐ \(x-1\ne0\) hoặc \(x+3\ne0\)

\(\Rightarrow x\ne1\)\(x\ne-3\)

\(\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(2x+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)

\(\Leftrightarrow3x^2+9x-x-3-\left(2x^2-2x+5x-5\right)=x^2+3x-x-3-4\)

\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5=x^2+3x-x-3-4\)

\(\Leftrightarrow9x-x+2x-5x-3x+x=3-5-3-4\)

\(\Leftrightarrow3x=-9\)

\(\Leftrightarrow x=-3\) (không thỏa ĐK)

Vậy PTVN

b) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{\left(x-3\right)\left(x+3\right)}\)

ĐKXĐ: \(x-3\ne0\Rightarrow x\ne3\)

\(x+3\ne0\Rightarrow x\ne-3\)

\(2x+7\ne0\Rightarrow2x\ne-7\Rightarrow x\ne\dfrac{-7}{2}\)

\(\dfrac{13\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}+\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}=\dfrac{6\left(2x+7\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}\)

\(\Leftrightarrow13\left(x+3\right)+\left(x-3\right)\left(x+3\right)=6\left(2x+7\right)\)

\(\Leftrightarrow13x+39+x^2+3x-3x-9=12x+42\)

\(\Leftrightarrow x^2+x-12=0\)

\(\Leftrightarrow x^2-3x+4x-12=0\)

\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

\(\left\{{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\left(KTĐK\right)\\x=-4\left(TĐK\right)\end{matrix}\right.\)

Vậy S={-4}

8 tháng 6 2017

a) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}=1-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\) ( đk: x ≠ 1 ; x ≠ -3 )

\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)

\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5=x^2+3x-x-3-4\)

\(\Leftrightarrow3x=-9\)

\(\Rightarrow x=-3\left(KTM\right)\)

S = ∅

b) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{\left(x-3\right)\left(x+3\right)}\)

( đk: x ≠ ± 3 ; x ≠ \(\dfrac{-7}{2}\) )

\(\Leftrightarrow13\left(x+3\right)+\left(x-3\right)\left(x+3\right)=6\left(2x+7\right)\)

\(\Leftrightarrow13x+39+x^2-9=12x+42\)

\(\Leftrightarrow x^2-x-12=0\)

\(\Leftrightarrow x^2+3x-4x-12=0\)

\(\Leftrightarrow x\left(x+3\right)-4\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-4=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\left(TM\right)\\x=3\left(KTM\right)\end{matrix}\right.\)

S = \(\left\{4\right\}\)

23 tháng 2 2019

a) Đk : \(x\ne0;\ne1\)

\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)

\(\Rightarrow\dfrac{x^2+3x}{x\left(x+1\right)}+\dfrac{x^2-x-2}{x\left(x+1\right)}-\dfrac{2x^2+2x-2}{x\left(x+1\right)}=0\)

\(\Rightarrow\dfrac{x^2+3x+x^2-x-2-2x^2-2x+2}{x\left(x-1\right)}=0\)

\(\Rightarrow\dfrac{0}{x-1}=0\)

=> Phương trình có vô số nghiệm x

b) Đk : \(x\ne2;x\ne3\)

\(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)

\(\Rightarrow\dfrac{2x+6}{\left(x-2\right)\left(x+3\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+3\right)}-\dfrac{5x}{\left(x-2\right)\left(x+3\right)}+\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}\)

=0

\(\Rightarrow\dfrac{2x+6-x^2+2x-5x+x^2+x+6}{\left(x-2\right)\left(x+3\right)}=0\)

\(\Rightarrow\dfrac{12}{\left(x-2\right)\left(x+3\right)}=0\)

=> Phương trình vô nghiệm

c)

\(\Leftrightarrow\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+x+1}{x^4+x^2+1}-\dfrac{1-2x}{x^4+x^2+1}=0\)

\(\Rightarrow\dfrac{x^2-x+1-x^2-x-1-1+2x}{x^4+x^2+1}=0\)

\(\Rightarrow\dfrac{-1}{x^4+x^2+1}=0\)

=> PTVN

d) Thôi tự làm đi, câu này dễ :Vvv

e)

\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)\)=40

\(\Rightarrow\left[\left(x+1\right)\left(x+5\right)\right]\cdot\left[\left(x+2\right)\left(x+4\right)\right]=40\)

\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)

Đặt

\(x^2+6x+7=t\)

Phương trình tương đương

\(\left(t-1\right)\left(t+1\right)=40\)

\(t^2=41\)

\(\)\(t=\pm\sqrt{41}\)

Thay vào tìm x.

24 tháng 2 2019

Thanks ;)

22 tháng 4 2017

a) 1x13x2x31=2xx2+x+11x−1−3x2x3−1=2xx2+x+1

Ta có: x31=(x1)(x2+x+1)x3−1=(x−1)(x2+x+1)

=(x1)[(x+12)2+34]=(x−1)[(x+12)2+34] cho nên x3 – 1 ≠ 0 khi x – 1 ≠ 0⇔ x ≠ 1

Vậy ĐKXĐ: x ≠ 1

Khử mẫu ta được:

x2+x+13x2=2x(x1)2x2+x+1=2x22xx2+x+1−3x2=2x(x−1)⇔−2x2+x+1=2x2−2x

4x23x1=0⇔4x2−3x−1=0

4x(x1

22 tháng 4 2017

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

1 tháng 6 2018

rảnh vãi

30 tháng 3 2018

Hỏi đáp Toán

30 tháng 3 2018

Dài quá c ơi :<

28 tháng 4 2018

câu nào cũng ghi lại đề nha

a) \(x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b)\(x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c) \(\left(x+1\right)\left(x+2\right)+\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1+x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\end{matrix}\right.\)

28 tháng 4 2018

d) \(\dfrac{1}{x-2}+3-\dfrac{3-x}{x-2}=0\)

\(\Leftrightarrow\dfrac{1+3\left(x-2\right)-\left(3-x\right)}{x-2}=0\)

\(\Leftrightarrow\dfrac{1+3x-6-3+x}{x-2}=0\) ( đk \(x\ne2\) )

\(\Leftrightarrow4x-8=0\Rightarrow x=2\)

đ) \(\dfrac{8-x}{x-7}-8-\dfrac{1}{x-7}=0\)

\(\Leftrightarrow\dfrac{8-x-8\left(x-7\right)-1}{x-7}=0\) (đk \(x\ne7\))

\(\Leftrightarrow8-x-8x+56-1=0\)

\(\Leftrightarrow-9x+63=0\)

\(\Leftrightarrow x=7\)

b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)

\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)

\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)

c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)

\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)

\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)

\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)

a: \(\Leftrightarrow\left(1-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+...+\dfrac{1}{49}-\dfrac{1}{57}\right)+2x-2=\dfrac{2}{3}x+\dfrac{7}{3}+\dfrac{5}{4}x-2\)

\(\Leftrightarrow\dfrac{56}{57}+2x-2=\dfrac{23}{12}x+\dfrac{1}{3}\)

=>1/12x=77/57

=>x=308/19

b: =>(x^2-4)(x^2-10)=72

=>x^4-14x^2+40-72=0

=>x^4-14x^2-32=0

=>(x^2-16)(x^2+2)=0

=>x^2-16=0

=>x^2=16

=>x=4 hoặc x=-4