K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

a, Trên AM lấy điểm E sao cho ME = MB

Có : góc BME = góc BCA = 60 độ

=> tam giác EMB đều => EB = MB và góc EMB = 60 độ

Góc EMB = 60 độ => góc EBC + góc CBM = 60 độ

Lại có : góc ABC = 60 độ nên góc ABE + góc EBC = 60 độ

=> góc ABE = góc CBM

=> tam giác AEB = tam giác CMB (c.g.c)

=> AE = CM

=> AM = AE + EM = CM+BM

14 tháng 1 2018

b, Theo câu a có tam giác AEB = tam giác CMB

=> góc EAB = góc MCB

=> tam giác MDC đồng dạng tam giác MBA (g.g)

=> MC/MA = MD/MB

=> MD.MA=MB.MC

Có : MD/MB + MD/MC = MD.(1/MB + 1/MC) = MD.(MB+MC)/MB.MC = MD/MA/MB.MC = 1

1. Cho tam giác ABC nội tiếp đường tròn tâm O. Tiếp tuyến tại A cắt BC tại I. a. \(\dfrac{IB}{IC}=\dfrac{AB^2}{AC^2}\) b. Tính IA và IC biết AB=20cm ; AC=28cm ; BC=24cm. 2. Cho đường tròn tâm O, dây cung MN, tiếp tuyến Mx. Trên tia Mx lấy điểm T sao cho MT=MN. Đường thẳng TN cắt đường tròn tại S. Chứng minh: a. ΔSMT cân b. \(TM^2=TF\cdot TN\) 3. Cho tam giác SBC nhọn nội tiếp đường tròn tâm O, các đường cao AD,...
Đọc tiếp

1. Cho tam giác ABC nội tiếp đường tròn tâm O. Tiếp tuyến tại A cắt BC tại I.

a. \(\dfrac{IB}{IC}=\dfrac{AB^2}{AC^2}\)

b. Tính IA và IC biết AB=20cm ; AC=28cm ; BC=24cm.

2. Cho đường tròn tâm O, dây cung MN, tiếp tuyến Mx. Trên tia Mx lấy điểm T sao cho MT=MN. Đường thẳng TN cắt đường tròn tại S. Chứng minh:

a. ΔSMT cân

b. \(TM^2=TF\cdot TN\)

3. Cho tam giác SBC nhọn nội tiếp đường tròn tâm O, các đường cao AD, BE và CF cắt nhau tại H và cắt đường tròn theo thứ tự tại M,N,K. Kẻ đường kính AI. Chứng minh:

a. C là điểm chính giữa của \(\widehat{MCN}\)

b. N đối xứng với H qua AC ; M đối xứng với H qua BC ; K đối xứng với H qua AB.

c. Chứng minh: tứ giác BCIM là hình thang cân

d. Gọi G là trung điểm của BC. Chứng minh: \(AH=2OG\).

e. Chứng minh: \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CK}{CF}=4\)

4. Cho tam giác ABC đều nội tiếp (O;R). Gọi M là một điểm bất kỳ trên cung nhỏ BC. Lấy điểm I trên dây AM sao cho MI=MB.

a. Chứng minh tam giác MBI là tam giác đều.

b. Chứng minh MA=MB+MC.

c. Gọi D là giao điểm của MA và BC. Chứng minh: \(\dfrac{1}{MD}=\dfrac{1}{MB}+\dfrac{1}{MC}\)

d. Tính tổng \(MA^2+MB^2+MC^2\) theo R

Help me mk dang can gap

0
1 tháng 2 2021

a, Trên AM lấy điểm E sao cho ME = MB

Có : góc BME = góc BCA = 60 độ

=> tam giác EMB đều => EB = MB và góc EMB = 60 độ

Góc EMB = 60 độ => góc EBC + góc CBM = 60 độ

Lại có : góc ABC = 60 độ nên góc ABE + góc EBC = 60 độ

=> góc ABE = góc CBM

=> tam giác AEB = tam giác CMB (c.g.c)

=> AE = CM

=> AM

= AE + EM = CM+BM

b, Theo câu a có tam giác AEB = tam giác CMB

=> góc EAB = góc MCB

=> tam giác MDC đồng dạng tam giác MBA (g.g)

=> MC/MA = MD/MB

=> MD.MA=MB.MC

Có : MD/MB + MD/MC = MD.(1/MB + 1/MC) = MD.(MB+MC)/MB.MC = MD/MA/MB.MC = 1