K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2019

Đỉnh parabol : \(I\left(1;-m^2-m-2\right)\) nằm trên đt y = x - 3 \(\Leftrightarrow x=1;y=-m^2-m-2\) t/m ct h/s :

\(-m^2-m-2=1-3\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)(loại m = 0)

NV
12 tháng 10 2020

\(\Delta'=m^2+m\left(m^2+1\right)=m^3+m^2+m\)

Tọa độ đỉnh \(I\left(-\frac{b}{2a};-\frac{\Delta'}{a}\right)\Rightarrow I\left(1;-m^2-m-1\right)\)

Để I thuộc d \(\Rightarrow-m^2-m-1=1-2\)

\(\Leftrightarrow m^2+m=0\Rightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=-1\end{matrix}\right.\)

7 tháng 12 2016

Toán lớp 9.

\(y=mx^2-2mx-m^2-1\)

\(=m\left(x^2-2x\right)-m^2-1\)

Điểm cố định của (d) có tọa độ là:

\(\left\{{}\begin{matrix}x^2-2x=0\\y=-m^2-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(x-2\right)=0\\y=-m^2-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;2\right\}\\y=-m^2-1\end{matrix}\right.\)

TH1: x=0

Thay x=0 và \(y=-m^2-1\) vào y=x-2, ta được:

\(-m^2-1=0-2=-2\)

=>\(m^2+1=2\)

=>\(m^2=1\)

=>\(\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)

TH2: x=2

Thay x=2 và \(y=-m^2-1\) vào y=x-2, ta được:

\(-m^2-1=2-2=0\)

=>\(m^2+1=0\)

=>\(m^2=-1\)(vô lý)

10 tháng 1 2021

\(y=\left(m-1\right)x^2-2mx+m+2\)(1)

+) Nếu \(m-1=0\Leftrightarrow m=1\)thì :

(1) \(\Leftrightarrow y=-2x+3\)là hàm số bậc nhất có hệ số góc \(-2< 0\Rightarrow\)hàm số nghịch biến trên \(R\)

=> Hàm số nghịch biến trên \(\left(-\infty;2\right)\)

Vậy khi \(m=1\)hàm số nghịch biến trên \(\left(-\infty;2\right)\)(2)

+) Nếu \(m-1\ne0\Leftrightarrow m\ne1\)thì (1) là hàm số bậc hai

(1) nghịch biến trên \(\left(-\infty;2\right)\)thì đồ thị h/s có bề lõm hướng lên trên

\(\Rightarrow\hept{\begin{cases}a=m-1>0\\-\frac{b}{2a}\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\\frac{2m}{2\left(m-1\right)}\ge2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\)

\(\Rightarrow1< m\le2\)\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\end{cases}}\)(3)

Từ (2) và (3) suy ra hàm số nghịch biến trên \(\left(-\infty;2\right)\)thì \(1\le m\le2\)

17 tháng 8 2016

Ta có : y = -2x+k(x+1) = x(k-2) + k

a) Đths đi qua gốc tọa độ thì có dạng y = ax (a khác 0) , do đó để y = x(k-2)+k đi qua gốc tọa độ thì k-2 = 0 => k = 2

b) đths đi qua điểm M(-2;3) nên \(3=-2.\left(-2\right)+k\left(-2+1\right)\Leftrightarrow k=1\)

c) để đths y = x(k-2)+k song song với đường thằng y = \(\sqrt{2}\)x thì a = a' , b khác b', tức là 

\(\begin{cases}k-2=\sqrt{2}\\k\ne0\end{cases}\) \(\Rightarrow\begin{cases}k=2+\sqrt{2}\\k\ne0\end{cases}\) 

3 tháng 10 2020

cho mình hỏi tại sao từ y = -2x+k(x+1) lại = x(k-2) +k vậy ạ?

0