\(CMR,nếu\)

\(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\r...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

\(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\Leftrightarrow\frac{y+z}{\frac{1}{a}}=\frac{z+x}{\frac{1}{b}}=\frac{x+y}{\frac{1}{c}}=\)

\(=\frac{y+z-\left(z+x\right)}{\frac{1}{a}-\frac{1}{b}}=\frac{z+x-\left(x+y\right)}{\frac{1}{b}-\frac{1}{c}}=\frac{x+y-\left(y+z\right)}{\frac{1}{c}-\frac{1}{a}}=\frac{y-x}{\frac{b-a}{ab}}=\frac{z-y}{\frac{c-b}{bc}}=\frac{x-z}{\frac{a-c}{ac}}\)

Chia các vế của 3 tỷ lệ thức cuối cho abc ta có:

\(\frac{y-x}{\frac{b-a}{ab}\cdot abc}=\frac{z-y}{\frac{c-b}{bc}\cdot abc}=\frac{x-z}{\frac{a-c}{ac}\cdot abc}=\frac{y-x}{c\left(b-a\right)}=\frac{z-y}{a\left(c-b\right)}=\frac{x-z}{b\left(a-c\right)}\)

Hay: \(\frac{x-y}{c\left(a-b\right)}=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}\)đpcm

16 tháng 9 2015

Từ giả thiết ta suy ra \(\frac{a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\).            

Áp dụng tính chất của dãy tỉ số bằng nhau ta được từ

 \(\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{\left(z+x\right)-\left(x+y\right)}{ca-ab}=\frac{z-y}{a\left(c-b\right)}=\frac{y-z}{a\left(b-c\right)}.\)        (1)

Tương tự, \(\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{\left(y+z\right)-\left(x+y\right)}{bc-ab}=\frac{z-x}{b\left(c-a\right)},\)              (2)
và 

\(\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{\left(y+z\right)-\left(z+x\right)}{bc-ca}=\frac{y-x}{c\left(b-a\right)}=\frac{x-y}{c\left(a-b\right)}.\)         (3)

Từ (1), (2), (3) ta suy ra \(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}.\)     (ĐPCM)

5 tháng 11 2017

em cũng gần giống thầy

18 tháng 7 2017

mk không hiểu

27 tháng 10 2020

đề đúng mà bn

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)

Ta có: \(H=\frac{xyz\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{ak\cdot bk\cdot ck\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\cdot\left(ak+bk\right)\cdot\left(bk+ck\right)\cdot\left(ck+ak\right)}\)

\(=\frac{k^3\cdot abc\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}{k^3\cdot abc\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)

Vậy: H=1

20 tháng 8 2020

đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Leftrightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)

theo giả thiết ta có \(H=\frac{xyz\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

thay \(H=\frac{ak.bk.ck\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(ak+bk\right)\left(bk+ck\right)\left(ck+ak\right)}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left[k\left(a+b\right)\right]\left[k\left(b+c\right)\right]\left[k\left(c+a\right)\right]}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc.k\left(a+b\right).k\left(b+c\right).k\left(c+a\right)}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)

Vậy H = 1

18 tháng 3 2020

áp dụng t/c dãy tỉ số = nhau ta đc

\(+)\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)(do a+b+c=1)

=> \(x+y+z=\frac{x}{a}\Leftrightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}\left(1\right)\)

+) \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=>\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)(do a^2 +b^2 +c^2 =1)

\(\Leftrightarrow x^2+y^2+z^2=\frac{x^2}{a^2}\left(2\right)\)

từ (1) zà (2)

=>\(\left(x+y+z\right)^2=x^2+y^2+z^2\left(dpcm\right)\)

Có \(a+b+c=a^2+b^2+c^2=1\) và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a;b;c\ne0\right)\left(1\right)\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\left(\frac{x}{a}\right)^2=\left(\frac{y}{b}\right)^2=\left(\frac{z}{c}\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\left(2\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}\). Theo \(\left(1\right)\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\). Theo \(\left(2\right)\)

Có  \(a+b+c=a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2=1^2=1\)

Từ các đẳng thức trên, ta suy ra : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(=\frac{x+y+z}{1}=\frac{\left(x+y+z\right)^2}{1}=\frac{x^2+y^2+z^2}{1}\Leftrightarrow1\left(x+y+z\right)^2=1\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\Leftrightarrowđpcm\)

14 tháng 7 2017

Bài 2:

a)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

=> a = b = c

b)

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)

=> x = y = z (theo a)

Thay x = y = z vào biểu thức, ta có:

\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)

c)

\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)

Thay a = b = c vào biểu thức, ta có:

\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)

14 tháng 7 2017

Thanks bạn, mà bạn làm đc bài 1 không?