Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL ;
A = { x E N / 0 ;1 ; 2 ; 3 ; 4 ; 5 }
B = { x E N / 0 ; 1 ; 2 ; 3 }
C = { x E N / 0 ; 1 }
D = { x E N / 0 ; x ; y }
Chúc bạn học tốt nhé !
Ví dụ 1: Cách 1:\(D=\left\{0;1;2;3;4;5;6;7\right\}\)
Cách 2: \(D=\left\{x\inℕ|x< 8\right\}\)
Ví dụ 2: A = {Đ, A, N, Ă, G}
Ví dụ 3: Cách 1: \(B=\left\{10;11;12;13;14\right\}\)
Cách 2: \(B=\left\{x\inℕ|9< x< 15\right\}\)
Ví dụ 5: Cách 1: \(B=\left\{0;1;2;3;4;5\right\}\)
Cách 2: \(B=\left\{x\inℕ|x\le5\right\}\)
Ví dụ 6: Cách 1: \(C=\left\{7;8;9;10\right\}\)
Cách 2: \(C=\left\{x\inℕ|6< x\le10\right\}\)
a) Gọi ƯCLN(n + 3;n + 4) = d
=> \hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1\hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1
=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau
=> n+3n+4n+3n+4là phân số tối giản
b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d
Ta có : \hept{3n+3⋮d9n+8⋮d⇒\hept⎧⎨⎩3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1\hept{3n+3⋮d9n+8⋮d⇒\hept{3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1
=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau
=> 3n+39n+83n+39n+8phân số tối giản
a) Gọi ƯCLN(n + 3;n + 4) = d
=> \hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1\hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1
=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau
=> n+3n+4n+3n+4là phân số tối giản
b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d
Ta có : \hept{3n+3⋮d9n+8⋮d⇒\hept⎧⎨⎩3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1\hept{3n+3⋮d9n+8⋮d⇒\hept{3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1
=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau
=> 3n+39n+83n+39n+8phân số tối giản
Gọi (n + 3,n + 2) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+2⋮d\end{cases}}\Leftrightarrow\left(n+3\right)-\left(n+2\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> (n + 3, n + 2) = 1
=> ĐPCM
b) Gọi (2n + 3; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
=> \(2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)
Khi d = 2 nhận thấy 2n + 3 \(⋮̸\)2 \(\forall n\)
=> d = 2 loại
=> d = 1
=> ĐPCM