Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10^n +18n-1 chia hết cho 27
->10....0 +18n-1
->(99...9 +1)+18n-1
-> 99...9 +18n
->9(111..1)+2n
mà 11...1 =9k+(11..11)
=9k+n
=9(9k+n+2n)
=9(9k+3n)
=9x3(k+n)
=27(k+n) chia hết cho 27(điều phải chứng minh)
k nha ban hiền
A = 10n + 18n - 1
A = 10n - 1 - 9n + 27n
A = 99...9 - 9n + 27n
n chữ số 9
A = 9.(11...1 - n) + 27n
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 11..1 - n chia hết cho 3
n chữ số 1
=> 9.(11...1 - n) chia hết cho 27 mà 27n chia hết cho 27
n chữ số 1
=> đpcm
3,
b, Có : abcd = 100ab + cd
= 100.2.cd + cd
= 200cd + cd
= ( 200 + 1 ). cd
= 201. cd
= 3.67 + cd
suy ra abcd chia hết cho 67.
a, Có : abc = abc0
abc0 = 1000a + bc0
= 999a + a + bc0
= 999a + bca
= 27.37a + bca
Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27
suy ra 27. 37a + bca chia hết cho 27
suy ra bca chia hết cho 27.
Có :
10n + 18n -1 = 10n -1+ 18n
= 100...0 ( n chữ số 0 ) - 1 + 18n
= 99...9 ( n chữ số 9 ) + 18n
= 9 [ 11...1 ( n chữ số 1 ) + 2n ]
Dễ thấy 11..1 ( n chữ số 1 ) có tổng các các chữ số là n
=> 11..1 ( n chữ số 1 ) + 2n = n+ 2n = 3n \(⋮\)3
vì 11..1 ( n chữ số 1 ) + 2n \(⋮\)3
=> 9 [ 11..1 ( n chữ số 1 ) + 2n ] \(⋮\) 27 hay 10n + 18n -1 \(⋮\) 27 ( đpcm )
Những lần mình ghi n chữ số 1 hoặc 9 hoăc 10 thì bạn có thể ngoắc ở dưới số đó luôn vì trên này không viết được như thế !
a) 2n + 111...1 = 3n + (111..1 - n)
n chữ số n chữ số
Vì 1 số và tổng các chữ của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
Mà 3n chia hết cho 3 => 2n + 111...1 chia hết cho 3
n chữ số
b) 10n + 18n - 1
= 100...0 - 1 - 9n + 27n
n chữ số 0
= 999...9 - 9n + 27
n chữ số 9
= 9.(111..1 - n) + 27n
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
=> 9.(111...1 - n) chia hết cho 27; 27n chia hết cho 27
=> 10n + 18n - 1 chia hết cho 27
c) 10n + 72n - 1
= 100...0 - 1 + 72n
n chữ số 1
= 999...9 - 9n + 81n
n chữ số 9
= 9.(111...1 - n) + 81n
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết cho 9
Típ theo lm tương tự câu trên
Sơ đồ con đường
Lời giải chi tiết
Bước 1. Chứng minh J = 10 n + 18 n − 1 chia hết cho 9.
Bước 2. Chứng minh J = 10 n + 18 n − 1 chia hết cho 3.
Ta có:
J = 10 n + 18 n − 1 = 10 n − 1 + 18 n ⇒ J = 99...9 + 18 n ⇒ J = 9 11...1 + 2 n
=> J chia hết cho 9.
+) Chứng minh 11...1 + 2 n ⋮ 3 .
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.
Số 11...1 gồm n chữ số 1. Khi đó, 1 + 1 + ... + 1 = n .
Suy ra 11...1 và n có cùng số dư trong phép chia cho 3.
=> 11...1-n chia hết cho 3.
=> (11...1+2n) ⋮ 3
⇒ J ⋮ 27