Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
Đáp án B
Gọi số cạnh đa giác là n ta có
44 n − 3 1 + 2 + ... + n − 1 = 158 ⇔ 44 n − 3 n n − 1 2 = 158
⇔ 3 n 2 − 91 n + 316 = 0 ⇒ n = 4
ta có \(\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\ge\left|\left(x-a\right)+\left(x-b\right)+\left(c-x\right)+\left(d-x\right)\right|=\left|c+d-a-b\right|=c+d-a-b\)( do a<b<c<d => c-a>0 và d-b>0)
vậy Min A= c+d-a-b
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
\(3+\frac{1}{4+\frac{1}{b+\frac{1}{6}}}=\frac{421}{130}\) \(\Rightarrow\frac{1}{4+\frac{1}{b+\frac{1}{6}}}=\frac{31}{130}\Rightarrow4+\frac{1}{b+\frac{1}{6}}=\frac{130}{31}\Rightarrow\frac{1}{b+\frac{1}{6}}=\frac{6}{31}\Rightarrow b+\frac{1}{6}=\frac{31}{6}\Rightarrow b=\frac{30}{6}=5\)
Vậy b = 5
\(\left(1-2x\right)^3=\left(-2\right)^3\)
\(1-2x=-2\)
\(-2x=-2-1\)
\(-2x=-3\)
\(x=\frac{-3}{-2}=\frac{3}{2}\)
\(\left(1-2x\right)^3=-8\)
\(\left(1-2x\right)^3=\left(-2\right)^3\)
\(\Rightarrow1-2x=-2\)
\(2x=3\)
\(x=\frac{3}{2}\)
Chọn đáp án D
Giả sử đa giác đã cho có n cạnh thì chu vi đa giác đó là S n = u 1 + u 2 + . . + u n với u 1 , u 2 , . . , u n lần lượt là số đo các cạnh của đa giác 0 < u 1 < u 2 < . . . < u n = 44 c m
Suy ra S n = u 1 + u n . n 2
Do n ∈ ℕ nên u 1 + 44 là ước nguyên dương của 316
Mà 316 = 2 7 . 79 nên u 1 = 44 ∈ 2 ; 4 ; 79 ; 158 ; 316
* Với u 1 + 44 = 2 ⇔ u 1 = - 42 < 0 (Loại).
* Với u 1 + 44 = 4 ⇔ u 1 = - 40 < 0 (Loại).
* Với u 1 + 44 = 79 ⇔ u 1 = 35 ⇔ n = 4
* Với u 1 + 44 = 158 ⇔ u 1 = 114 ⇔ n = 2 (Loại do số cạnh của một đa giác luôn lớn hơn 2, tức là n > 2 , n ∈ ℕ ) .
* Với u 1 + 44 = 316 ⇔ u 1 = 272 ⇔ n = 1 (Loại).
Vậy đa giác đã cho có 4 cạnh.