Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100}-1}\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{2^2}+...+\frac{1}{2^{100}}+\frac{1}{2^{100}-1}\)
\(\Rightarrow A=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+...+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}-1}\right)\)
\(\Rightarrow A< 1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+...+\frac{1}{2^{99}}.2^{99}\)
\(\Rightarrow A< 100\left(đpcm\right)\)
\(b)A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100}-1}\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{2^2}+...+\frac{1}{2^{100}}+\frac{1}{2^{100}-1}+\frac{1}{2^{100}}-\frac{1}{2^{100}}\)
\(\Rightarrow A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+\frac{1}{2^3}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)
\(\Rightarrow A>1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100}}.2^{99}-\frac{1}{2^{100}}\)
\(\Rightarrow A>1+\frac{1}{2}.100-\frac{1}{2^{100}}\)
\(\Rightarrow A>51-\frac{1}{2^{100}}>51-1\)
\(\Rightarrow A>50\left(đpcm\right)\)
\(a)\) Đặt \(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\) ta có :
\(A=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2013+2}{2013}\)
\(A=\frac{2014}{2014}-\frac{1}{2014}+\frac{2015}{2015}-\frac{1}{2015}+\frac{2013}{2013}+\frac{2}{2013}\)
\(A=1-\frac{1}{2014}+1-\frac{1}{2015}+1+\frac{2}{2013}\)
\(A=\left(1+1+1\right)-\left(\frac{1}{2014}+\frac{1}{2015}-\frac{2}{2013}\right)\)
\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\left(\frac{1}{2013}+\frac{1}{2013}\right)\right]\)
\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2013}\right]\)
\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]\)
Mà :
\(\frac{1}{2014}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2014}-\frac{1}{2013}< 0\)
\(\frac{1}{2015}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2015}-\frac{1}{2013}< 0\)
Từ (1) và (2) suy ra : \(\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)< 0\) ( cộng theo vế )
\(\Rightarrow\)\(-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>0\)
\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>3\) ( cộng hai vế cho 3 )
\(\Rightarrow\)\(A>3\) ( điều phải chứng minh )
Vậy \(A>3\)
Chúc đệ học tốt ~
c,
\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{9999}{10000}\)
vì \(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
.............................
\(\frac{9999}{10000}< \frac{10000}{10001}\)
nên \(C^2< \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{10000}{10001}\)
\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)
\(\Rightarrow C< \frac{1}{100}\)
bt lm mỗi một câu :v
,mình sửa lại đề:
\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}< 3\)
xóa các chữ số ở tử và mẫu: 2014 và 2014,2015 và 2015
=\(\frac{2013}{2013}\)
=\(1\)
vì \(1>3\) nên \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)