K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

B=1/4+(1/5+1/6+...+1/9)+(1/10+1/11+...+1/19)

Vì 1/5+1/6+...+1/9>1/9+1/9+...1/9 nên 1/5+1/6+...+1/9>5/9>1/2

Vì 1/10+1/11+...+1/19>1/19+1/19+...+1/9 nên 1/10+1/11+...+1/19>10/19>1/2

=> B>1/4+1/2+1/2>1

18 tháng 4 2016

B= 1/4+(1/5+1/6+...+1/9)+(1/10+1/11+...+1/19)
Vì 1/5+1/6+...+1/9 > 1/9+1/9+...+1/9 nên 1/5+1/6+...+1/9 > 5/9 >1/2
Vì 1/10+1/11+...+1/19 > 1/19+1/19+...+1/19 nên 1/10+1/11+...+1/19 > 10/19 >1/2
Suy ra: B > 1/4+1/2+1/2 > 1
 

18 tháng 4 2016

B= 1/4+(1/5+1/6+...+1/9)+(1/10+1/11+...+1/19)

Vì 1/5+1/6+...+1/9 > 1/9+1/9+...+1/9 nên 1/5+1/6+...+1/9 > 5/9 >1/2

Vì 1/10+1/11+...+1/19 > 1/19+1/19+...+1/19 nên 1/10+1/11+...+1/19 > 10/19 >1/2

Suy ra: B > 1/4+1/2+1/2 > 1
 

19 tháng 4 2016

B= 1/4+(1/5+1/6+...+1/9)+(1/10+1/11+...+1/19)

Vì 1/5+1/6+...+1/9 > 1/9+1/9+...+1/9 nên 1/5+1/6+...+1/9 > 5/9 >1/2

Vì 1/10+1/11+...+1/19 > 1/19+1/19+...+1/19 nên 1/10+1/11+...+1/19 > 10/19 >1/2

Suy ra: B > 1/4+1/2+1/2 > 1
 

19 tháng 4 2016

B= 1/4+(1/5+1/6+...+1/9)+(1/10+1/11+...+1/19) 

Vì 1/5+1/6+...+1/9 > 1/9+1/9+...+1/9 nên 1/5+1/6+...+1/9 > 5/9 >1/2

Vì 1/10+1/11+...+1/19 > 1/19+1/19+...+1/19 nên 1/10+1/11+...+1/19 > 10/19 >1/2 

Suy ra : B > 1/4 + 1/2 + 1/2 > 1

17 tháng 3 2016

a) \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\) = \(\frac{1}{n}\) . \(\frac{1}{n+1}\) =>đpcm

 

17 tháng 3 2016

b) A= \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\)+...+\(\frac{1}{8}\) - \(\frac{1}{9}\) +\(\frac{1}{9}\)

\(\frac{1}{2}\) + \(\frac{1}{9}\)\(\frac{11}{18}\)

5 tháng 4 2016

9/31/35

 

5 tháng 4 2016

các bạn trình bày cách làm cho mình

1 tháng 2 2016

\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\)

\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\)

Suy ra: điều cần chứng minh

1 tháng 2 2016

đặt 1/5^2+1/6^2+,,,+1/100^2=A

*chứng minh A<1/4

ta có: \(\frac{1}{5^2}=\frac{1}{5.5}<\frac{1}{4.5}\)

\(\frac{1}{6^2}=\frac{1}{6.6}<\frac{1}{5.6}\)

...

\(\frac{1}{100^2}=\frac{1}{100.100}<\frac{1}{99.100}\)

\(=>A<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)    
\(=>A<\frac{1}{4}-\frac{1}{100}<\frac{1}{4}=>A<\frac{1}{4}\left(1\right)\)

*chứng minh A>1/6

ta có \(\frac{1}{5^2}=\frac{1}{5.5}>\frac{1}{5.6}\)

\(\frac{1}{6^2}=\frac{1}{6.6}>\frac{1}{6.7}\)

...

\(\frac{1}{100^2}=\frac{1}{100.100}>\frac{1}{100.101}\)

\(=>A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(=>A>\frac{1}{5}-\frac{1}{101}>\frac{1}{6}=>A>\frac{1}{6}\) (2)

từ (1) và (2)=>1/6<A<1/4 hay 1/6<1/5^2+...+1/100^2<1/4(đpcm)

tick nhé

16 tháng 3 2016

\(\frac{\left(\frac{518}{19}-\frac{342}{13}\right).\left(\frac{177}{236}+\frac{76}{236}-\frac{6}{236}\right)}{\left(\frac{3}{4}+x\right).\frac{27}{33}}=1\)

=>\(\frac{\left(\frac{6734}{247}-\frac{6498}{247}\right).\frac{247}{236}}{\left(\frac{3}{4}+x\right).\frac{27}{33}}=1\)

=>(3/4+x)*27/33=236/247*247/236=1

3/4+x=1:27/33=33/27

x=33/27-3/4=132/108-81/108

x=51/108

Vậy x=51/108

16 tháng 3 2016

tính tử rồi nhân chéo lên tìm x

30 tháng 10 2018

a) ĐK: \(x\ge0,x\ne1,x\ne\frac{1}{4}\)

\(A=1+\left(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}\right)\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)

\(A=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(A=1+\left[\frac{2\sqrt{x}-1}{1-\sqrt{x}}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(A=1-\sqrt{x}+\frac{x\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)

\(A=\frac{x+1}{x+\sqrt{x}+1}\)

Để \(A=\frac{6-\sqrt{6}}{5}\Rightarrow\frac{x+1}{x+\sqrt{x}+1}=\frac{6-\sqrt{6}}{5}\)

\(\Rightarrow5x+5=\left(6-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+6-\sqrt{6}\)

\(\Rightarrow\left(1-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+1-\sqrt{6}=0\)

\(\Rightarrow x-\sqrt{6}.\sqrt{x}+1=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{\sqrt{2}+\sqrt{6}}{2}\\\sqrt{x}=\frac{-\sqrt{2}+\sqrt{6}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\left(tmđk\right)\)

b) Xét \(A-\frac{2}{3}=\frac{x+1}{x+\sqrt{x}+1}-\frac{2}{3}=\frac{3x+3-2x-2\sqrt{x}-2}{3\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x-2\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}\)

Do \(x\ge0,x\ne1,x\ne\frac{1}{4}\Rightarrow\left(\sqrt{x}-1\right)^2>0\)

Lại có \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)+\frac{3}{4}>0\)

Nên \(A-\frac{2}{3}>0\Rightarrow A>\frac{2}{3}\).

26 tháng 4 2016

Bạn xem lời giải của mình nhé:

Giải:

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}+\frac{1}{7.8}\\\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8} \\ =\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=1-\frac{1}{8}< 1\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< 1\)

Chúc bạn học tốt!hihi

26 tháng 4 2016

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{7.8}\)

                                          = \(1-\frac{1}{8}< 1\)

Vậy B < 1