\(Cho:1/a^2 + 1/b^2 + 1/c^2=0 .Tính: M= bc/a^2 + ca/b^2 + ab/c^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

từ giả thiết ta có

\(\frac{1}{bc-a^2}=\frac{1}{b^2-ca}+\frac{1}{c^2-ab}=\frac{c^2-ab+b^2-ca}{\left(b^2-ca\right)\left(c^2-ab\right)}\)

Nhân hai vế với \(\frac{a}{bc-a^2}\) ta có:

\(\frac{a}{\left(bc-a^2\right)^2}=\frac{ac^2-a^2b+ab^2-ca^2}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\)

làm tương tự với hai số hạng còn lại ta được:

\(\frac{b}{\left(ca-b^2\right)^2}=\frac{bc^2-ab^2+a^2b-b^2c}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\);\(\frac{c}{\left(ab-c^2\right)^2}=\frac{b^2c-c^2a+a^2c-bc^2}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\)

cộng ba vế của đẳng thức trên ta được kq là 0 hihi

2 tháng 1 2017

cách kia dài quá

Đặt \(x=bc-a^2;y=ac-b^2;z=ab-c^2\)

Suy ra cần chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{a}{x^2}+\frac{b}{y^2}+\frac{c}{z^2}=0\)

Xét \(T=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\).....

8 tháng 5 2017

đề bài đúng ko vậy bạn?

8 tháng 5 2017

Đề bài chắc chắn đúng bạn ạ

16 tháng 2 2019

Bài 1:

a) \(\)Ta có: x2 + y2 + z2 + 3 - 2(x + y + z) = (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1) = (x - 1)2 + (y - 1)2 + (z - 1)2 ≥ 0

=> x2 + y2 + z2 + 3 ≥ 2(x + y + z)

b) Áp dụng liên tiếp bất đẳng thức Cô-si:

\(\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2\sqrt{a^4b^4}+2\sqrt{c^4d^4}=2\left(a^2b^2+c^2d^2\right)\ge2.2.\sqrt{a^2b^2c^2d^2}=4\left|abcd\right|\ge4abcd\)

Dấu "=" xảy ra <=> a = b = c = d

Bài 2:

Ta sẽ chứng minh ab + bc + ca ≤ \(\dfrac{1}{3}\)(a + b + c)2 = 0

<=> 3ab + 3bc + 3ca ≤ (a + b + c)2

<=> 3ab + 3bc + 3ca ≤ a2 + b2 + c2 + 2ab + 2bc + 2ca

<=> ab + bc + ca ≤ a2 + b2 + c2

Thật vậy:

(a - b)2 + (b - c)2 + (c - a)2 ≥ 0

<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2 ≥ 0

<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca

<=> a2 + b2 + c2 ≥ ab + bc + ca

Dấu "=" xảy ra <=> a = b = c = 0

18 tháng 2 2019

@Nguyễn Thị Ngọc Thơ tưởng bữa trước bảo là tên cặn bã cơ mà =.='', giờ sv là sao -.-

Cơ mà bỏ cái thói like dạo rồi à ?

30 tháng 6 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\\ \)

\(\Rightarrow bc=-ab-ac,ca=-ab-bc,ab=-bc-ca\)

\(\Rightarrow\frac{a^2+bc}{a^2+2bc}=\frac{a^2+bc}{a^2+bc+bc}=\frac{a^2+bc}{a^2+bc-ca-ab}=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}\)

     Làm tương tự. có: \(\frac{b^2+ca}{b^2+2ca}=\frac{b^2+ca}{b^2+ca-ab-bc}=\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}\)

 \(\frac{c^2+ab}{c^2+2ab}=\frac{c^2+ab}{c^2+ab-ca-bc}=\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)

\(\Rightarrow A=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}+\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}+\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)

\(=\frac{\left(a^2+bc\right).\left(b-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}-\frac{\left(b^2+ca\right).\left(a-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}+\frac{\left(c^2+ab\right).\left(a-b\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}\)

Sau đó bạn thực hiện tiếp nhé.

2 tháng 8 2021

Bài 1: Cho \(a,b,c\ge0:a^2+b^2+c^2=3\). CMR: \(a^4b^4+b^4c^4+c^4a^4\le3\)

Bài 2: Cho \(a,b,c\ge0\). CMR: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Bài 3: Cho \(a,b,c\ge0:a^2+b^2+c^2=a+b+c\). CMR: \(a^2b^2+b^2c^2+c^2a^2\le ab+bc+ca\)

Bài 4: Cho \(a,b,c\ge0\). CMR: \(4\left(a+b+c\right)^3\ge27\left(ab^2+bc^2+ca^2+abc\right)\)

Bài 5: Cho \(a,b,c\ge0:a+b+c=3\).CMR: \(\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}+\frac{1}{2ab^2+1}\ge1\)

22 tháng 9 2017

Cậu viết gì vậy?

22 tháng 9 2017

dễ mà

\(A=\frac{abc}{c^3}+\frac{abc}{b^3}+\frac{abc}{a^3}\)

\(A=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

ta có

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\left(\frac{1}{a}+\frac{1}{b}\right)^3+\frac{1}{c^3}-\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}-\frac{1}{ac}-\frac{1}{bc}\right)+\frac{3}{abc}=\frac{3}{abc}\)

\(A=abc.\frac{3}{abc}=3\)