Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B làA. 50° B. 60° C. 55° D. 75°Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A làA. 40° C. 15° C. 105° D. 30°Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:A MN^+ NP^= MP^B MP ^+NP^ =MN^C NM= NPD pN^+ MP^= MN^Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC làA. 17 cm B. 13 cm C. 14 cm D. 14,4 cmCâu 5. Cho tam giác...
Đọc tiếp
Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B là
A. 50° B. 60° C. 55° D. 75°
Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A là
A. 40° C. 15° C. 105° D. 30°
Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:
A MN^+ NP^= MP^
B MP ^+NP^ =MN^
C NM= NP
D pN^+ MP^= MN^
Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC là
A. 17 cm B. 13 cm C. 14 cm D. 14,4 cm
Câu 5. Cho tam giác HIK vuông tại I, IH = 10 cm, HK = 16 cm. Độ dài cạnh IK là
A. 26 cm
B. \(\sqrt{156}cm\)
C \(\sqrt{12}cm\)
D. 156cm
Câu 6. Cho tam giác ABC cân tại A, AH vuông góc với BC tại H, AB = 10cm. BC = 12 cm.
Độ dài AH bằng
A. 6cm. B. 4 cm C. 8cm D. 64 cm
Câu 7. Cho tam giác đều ABC có độ dài cạnh là 6 cm. Kẻ AI vuông góc với BC. Độ dài cạnhAI là
A. \(3\sqrt{3}cm\)
B. 3 cm
C. \(3\sqrt{2}\)
D. 4 cm
Câu 8. Một chiếc tivi có chiều rộng là 30 inch, đường chéo là 50 inch. Chiều dài chiếc tivi đó là
A. 20 inch B. 1600 inch 3400 inch. D. 40 inch
Câu 9. Tam giác vuông là tam giác có độ dài ba cạnh là:
A. 3cm, 4cm,5cm B. 5cm, 7cm, 8cm C. 4cm, 6 cm, 8cm D. 3cm, 5cm, 7cm
Câu 10. Tam giác ABCcân tại A. Biết AH = 3cm, HC = 2 cm. Khi đó độ dài BC bằng
A. 5 cm
B. 4cm
C.\(2\sqrt{5}cm\)
D \(2\sqrt{3}cm\)
Giups mik vs mik đg cần gấp
a) Ta có tam giác MNP vuông tại M, với MN = 6 cm, MD = 3 cm, ME = 8 cm. Ta cần so sánh độ dài PD và PE.
Vì tam giác MNP vuông tại M, ta có hai tam giác vuông nhỏ MDP và MEP.
Theo định lý Pythagoras trong tam giác vuông, ta có:
- Trong tam giác MDP: MP² = MD² + DP²
=> MP = √(MD² + DP²) = √(3² + DP²) = √(9 + DP²)
- Trong tam giác MEP: MP² = ME² + EP²
=> MP = √(ME² + EP²) = √(8² + EP²) = √(64 + EP²)
Vì MP là đoạn thẳng cố định, nên ta có: √(9 + DP²) = √(64 + EP²)
=> 9 + DP² = 64 + EP²
=> DP² - EP² = 55
=> DP² > EP²
=> DP > EP
Vậy ta kết luận rằng độ dài của đoạn thẳng PD lớn hơn độ dài của đoạn thẳng PE.
b) Để sắp xếp các đoạn thẳng PD, PE, PN theo thứ tự có độ dài tăng dần, ta cần tính độ dài của đoạn thẳng PN.
Trong tam giác vuông MNP, ta áp dụng định lý Pythagoras:
PN² = MN² + MP²
=> PN = √(MN² + MP²) = √(6² + MP²) = √(36 + MP²)
Với MP = √(9 + DP²), ta có: PN = √(36 + 9 + DP²) = √(45 + DP²)
Để sắp xếp các đoạn thẳng theo thứ tự tăng dần, ta cần so sánh độ dài của chúng. Ta đã biết rằng DP > EP, nên để sắp xếp tăng dần, ta có: PE < PN < PD.
Vậy thứ tự các đoạn thẳng là: PE < PN < PD.