K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

Giải bài tập Toán 9 | Giải Toán lớp 9

Ta có: BC đi qua điểm H thuộc đường tròn (A; AH)

BC ⊥ AH tại H

⇒ BC là tiếp tuyến của đường tròn (A; AH)

10 tháng 11 2018

Giải bài tập Toán 9 | Giải Toán lớp 9

Ta có: BC đi qua điểm H thuộc đường tròn (A; AH)

BC ⊥ AH tại H

⇒ BC là tiếp tuyến của đường tròn (A; AH)

29 tháng 7 2021

a) Vì \(BC\bot AH\Rightarrow BC\) là tiếp tuyến của (A;AH)

Vì BD,BH là tiếp tuyến \(\Rightarrow AB\) là phân giác \(\angle DAH\Rightarrow\angle DAH=2\angle BAH\)

Vì CE,CH là tiếp tuyến \(\Rightarrow AC\) là phân giác \(\angle EAH\Rightarrow\angle EAH=2\angle CAH\)

\(\Rightarrow\angle DAH+\angle EAH=2\left(\angle BAH+\angle CAH\right)=2\angle BAC=180\)

\(\Rightarrow\angle DAE=180\Rightarrow D,A,E\) thẳng hàng

b) Vì  \(AB\) là phân giác \(\angle DAH\)

\(\Rightarrow\angle DAB=\angle BAH=90-\angle ABC=\angle ACB\)

\(\Rightarrow DA\) là tiếp tuyến của (BAC) nên DE là tiếp tuyến của (BAC)

mà \(\angle BAC=90\Rightarrow\) (BAC) là đường tròn đường kính (BC)

nên ta có đpcm

 

 

Tự vẽ hình nha !

a) Ta có AH vuông góc BC 

H thuộc (A;AH)

=> BC là tiếp tuyến của (A;AH)

Xét (A) có DB và BH là 2 tiếp tuyến cắt nhau

=> A1 = A2

Tương tự ta chứng minh được : A3 = A4

Mà A2 + A3 = 90 độ

=> A1 + A2 + A3 + A4 = 90 độ + 90 độ = 180 độ

=> DAE = 180 độ

=> D,A,E thẳng hàng

b) Gọi M là trung điểm BC

Theo tính chất tiếp tuyến ta có :

AD vuông góc BD

AE vuông góc CE

=> BD//CE

=> BDEC là hình thang

=> MA là đường trung bình của hình thang BDEC

=> MA // BD

=> MA vuông góc DE

Xét tam giác vuông ABC có : MA = MB = MC

=> M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến đường tròn tâm M đường kính BC

a: BC vuông góc AH tại H

nên BC là tiếp tuyến của (A)

b: Xét (A) có

BH,BE là tiếp tuyến

nên AB là phân giác của góc HAE(1)

Xét (A) có

CF,CH là tiếp tuyến

nên AC là phân giác của góc HAF(2)

Từ (1), (2) suy ra góc FAE=2*90=180 độ

=>F,A,E thẳng hàng

c: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)

30 tháng 12 2017

a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

AB là tia phân giác của góc HAD

\(\Rightarrow\widehat{DAB}=\widehat{BAH}\)

AC là tia phân giác của góc HAE

\(\Rightarrow\widehat{HAD}=\widehat{CAE}\)

Ta có: \(\widehat{HAD}+\widehat{HEA}=2.\left(\widehat{BAH}+\widehat{HAC}\right)=2.\widehat{BAC}=2.90^o=180^o\)

Vậy ba điểm D, A, E thẳng hàng.

b) Gọi M là trung điểm của BC

Theo tính chất của tiếp tuyến, ta có: \(AD\downarrow BD;AE\downarrow CE\)

Suy ra: BD // CE

Vậy tứ giác BDEC là hình thang

Khi đó MA là đường trung bình của hình thang BDEC

Suy ra: \(MA\\ BD\Rightarrow MA\downarrow DE\)

Trong tam giác vuông ABC ta có: MA = MB = MC

Suy ra M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC

24 tháng 6 2017

a) theo tính chất 2 tiếp tuyến cắt nhau

ta có : DAB = BAH và HAC = CAE

DAH + HAE = 2(BAH + HAC) = 2.90 = 180

vậy D , A , E thẳng hàng

14 tháng 12 2023

a: Xét (A;AH) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;AH)

b: Xét (A) có

BH,BD là các tiếp tuyến

Do đó: BH=BD và AB là phân giác của góc HAD

Xét (A) có

CE,CH là các tiếp tuyến

Do đó: CE=CH và AC là phân giác của góc HAE

c: BD+CE

=BH+CH

=BC

d: AB là phân giác của góc HAD

=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)

AC là phân giác của góc HAE

=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)

Ta có: \(\widehat{HAD}+\widehat{HAE}=\widehat{EAD}\)

=>\(\widehat{EAD}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{EAD}=2\cdot\widehat{BAC}=180^0\)

=>E,A,D thẳng hàng

15 tháng 12 2023

loading...  loading...  loading...