K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

bucminh

Mình ko biết

14 tháng 3 2017

A B C D E 1 1 1 2 2 1

\(\Delta ABC\)cân tại A nên\(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{BAC}}{2}=75^0\)

Trên nửa mặt phẳng bờ BC chứa A lấy E sao cho\(\widehat{B_1}=\widehat{C_1}=45^0\)

=>\(\widehat{ABE}=75^0-45^0=30^0;\Delta EBC\)vuông cân tại E =>\(BE=EC=\frac{BC}{\sqrt{2}}=\sqrt{2}\left(cm\right)\)(định lí Pitago)

\(\Delta ABE,\Delta BAD\)có AB chung ; BE = AD\(\left(=\sqrt{2}cm\right)\);\(\widehat{ABE}=\widehat{BAD}\left(=30^0\right)\)

\(\Rightarrow\Delta ABE=\Delta BAD\left(c.g.c\right)\Rightarrow\widehat{A_1}=\widehat{B_2}\)

Lại có\(\Delta AEB=\Delta AEC\left(c.c.c\right)\)nên\(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{BAC}}{2}=15^0\Rightarrow\widehat{B_2}=15^0\)

\(\Rightarrow\widehat{D_1}=\widehat{BAD}+\widehat{B_2}=45^0\)(\(\widehat{D_1}\)là góc ngoài\(\Delta ABD\)) ;\(\widehat{DBC}=75^0-15^0=60^0\)

\(\Delta BDC\)\(\widehat{D_1}< \widehat{DBC}< \widehat{DCB}\left(45^0< 60^0< 75^0\right)\)nên BC < DC < BD

14 tháng 3 2017

bai nay trong sach nang cao toan 7 trang 141

10 tháng 10 2017

B A D C E

a) Xét tam gics BAD và BED ta có:

BD là cạnh chung (gt)

AB=AE (gt)

Góc ABD=góc DBC ( vid BD là phân giác của gốc B)

=> Tam giác BAD=tam gics BED (c.g.c)

=>AD=DE ( 2 cạnh tương ứng)

=> Tam giác BAD= tam giác BED

=> góc BAD=BED(2 góc tương ứng)

=>BED=BAD=90*

Xét tam giác ABC và EDC ta cosL'

BAC=DEC=90*

góc C chung

=> tam giác ABC~tam giác EDC (g-g)

=> goác ABC=EDC

b) Xét tam giác ABE ta có:

AB=BE

=> tam giác ABE cân tại B

mà BD là tia phân giác của góc B

=> BD là đường cao

=> BD vuông góc vs AE

28 tháng 11 2017

g-g là j

*Tự vẽ hình

a) Xét tam giác ABD và EBD có :

\(\widehat{ABD}=\widehat{DBE}\left(gt\right)\)

BD : cạnh chung

BA=BE(gt)

=> Tam giác ABD=EBD(c.g.c)

=> AD=DE

và \(\widehat{BAD}=\widehat{DEB}=90^o\)

\(\Rightarrow\widehat{BAD}=\widehat{DEC}=90^o\)

b) Gọi giao điểm của BD và AE là O

Tam giác ABO=EBO(c.g.c) (tự cm)

=> \(\widehat{BOA}=\widehat{BOE}\)

Mà : \(\widehat{BOA}+\widehat{BOE}=180^o\)

\(\Rightarrow\widehat{BOA}=90^o\)

\(\Rightarrow AE\perp BD\left(đccm\right)\)

#H