Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn cách vẽ hình : Cậu nên vẽ hình thang ABCD cân tại C và D và sao cho góc A và góc D là 2 góc kề 1 bên của tứ giác !!!!( ko bt vẽ trên này
Giải :
Ta có hình thang ABCD có 2 đáy AB và DC
=> AB//DC
Mà M là giao điểm phân giác của 2 góc B và góc D nằm trên AB
=> AM//DC
=> BM//DC
Vì AM//BC
=> AMD = MDC ( 2 góc so le trong ) ( 1)
Mà DM là pg ADC
=> ADM = MDC (2)
Từ (1) và (2) :
=> ADM = AMD
=> Tam giác AMD cân tại A
=> AD = AM(3)
Chứng minh tương tự ta cũng có tam giác MBC cân tại B và suy ra BC = MB(4)
Từ (3) và (4)
=> M là trung điểm AB
Còn ý b) ko bt làm
Sai thông cảm nhé
Ko bt vẽ hình ở đây ntn Thông cảm 🙏🙏
Cách vẽ : Vẽ sao cho cân tại B và C và B ; C là 2 góc trong cùng phía , nối A với C
Giải:
a) Vì AB//DC ( gt)
=> BAC = ACD ( so le trong )
Mà AC là pg BCD
=> BCA = ACD
Mà BAC = ACD (cmt)
=> BCA = BAC
=> tam giác BAC cân tại B
B)
Giải :
Vì AH vuông góc với DC
=> BHD = 90 độ
Vì AF vuông góc với DC
=> AFC = 90 độ
=> AFC= BHD = 90 độ
=> AF// BH(1)
Vì AB// DC ( gt)
=> AB//FC (2)
Từ (1) và (2)=> AB = AF = FH = HB = 5cm ( Vì AF = 5cm) tính chất của hình thang
Vì tam giác ABC cân tại B ( cm ở ý a)
=> AB = BC = 5cm
Áp dụng định lý Py- ta - go ta có :
BC2= BG2+GC2
GC2=√25-- BG2
Tớ phân vân không biết đáp án của tớ có đúng không Nếu sai thông cảm nhé
Bài 1: Nhường chủ tus và các bạn:D
Bài 2(ko chắc nhưng vẫn làm:v): A B C D O
Do OA = OB(*) nên \(\Delta\)OAB cân tại O nên ^OAB = ^OBA (1)
Mặt khác cho AB // CD nên^OAB = ^OCD; ^OBA = ^ODC (so le trong) (2)
Từ (1) và (2) có ^OCD = ^ODC nên \(\Delta\) ODC cân tại O nên OC = OD (**)
Cộng theo vế (*) và (**) thu được:OA + OC = OB + OD
Hay AC = BD. Do đó hình thang ABCD có 2 đường chéo bằng nhau nên nó là hình thang cân (đpcm)
B1: Tứ giác ABCD : ^B=^C (=110 ĐỘ) => ABCD là hình thang cân
B2 : A B D C O
Là hình thang vì mn // bc
tg abc cân tại a => b1=c1 =[180-40]/2=70
vì bmnc là ht => b1=m=70
c1=n=70
b2 và c2 = nhau => b2=c2 =180-70=110
vậy b2=110 c2=110 n=70 m=70
Mình ko vẽ hình đâu nha
Ta có : Góc MAB = góc ABC ( vì MN // BC)
Góc NAC = góc ACB ( vì MN // BC )
Mà góc ABC= góc ACB ( Tam giác ABC cân )
Nên góc MAB=góc NAC
Xét tam giác ABM và tam giác ACN có
AB=AC ( vì tam giác ABC cân tại A )
Góc MAB= góc NAC ( cmt)
MA= NA ( vì A là tđ cuả MN )
Nên tam giác ABM = ACN
BCMN có BC// Mn và góc BMA=góc CNA ( 2 góc tương ứng)
Nên MNCB là hình thang cân
Đáp án cần chọn là: B
Ta có AB = AM + MB và AC = AN + NC
Mà AB = AC (do tam giác ABC cân tại A) và BM = NC (gt)
Suy ra AN = AM
Xét tam giác AMN cân tại A.
Suy ra A M N ^ = A N M ^ .
Xét tam giác ANM có: A ^ + A M N ^ + A N M ^ (tổng ba góc trong một tam giác)
A M N ^ = 180 0 − A 2 (vì A M N ^ = A N M ^ ) (1)
Xét tam giác ABC cân tại A ta có:
A ^ + B ^ + C ^ = 180 ° (tổng ba góc trong một tam giác) nên B ^ = 180 0 − A 2 (vì B ^ = C ^ ) (2)
Từ (1) và (2) A M N ^ = B ^
Mà B ^ , A M N ^ là hai góc đồng vị nên MN // BC
Xét tứ giác MNCB có MN // BC nên MNCB là hình thang.
Lại có B ^ = C ^ (do ΔABC cân tại A) nên MNCB là hình thang cân.