K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

 

a/ Xét tam giác OAC và tam giác OBD có

O : góc chung

OA = OB (GT)

OC = OD (GT)

=> tam giác OAC = tam giác OBD ( cạnh góc cạnh )

=>AC = BD (2 cạnh tương ứng)

b/ Xét tam giác IAD và IBC có

-góc C = góc D (vì tam giác OAC=tam giác OBD)

-A = B = 900

-AI = BI (vì AC = BD)

=> tam giác IAD = tam giác IBC (góc cạnh góc)

=>AD=BC (2 cạnh tương ứng)

c/ Xét tam giác OAI và tam giác OBI có

-OA = OB (GT)

-góc AIO = góc OIB

-A = B = 900

=> tam giác OAI = tam giác OBI (cạnh góc cạnh)

=> góc AOI = góc IOB (2 góc tương ứng)

Vậy OI là phân giác của góc O

d/ Gọi OI và AB cắt nhau tại M

Xét tam giác OAM và tam giác OBM có

-AOM = BOM

-OA = OB

-OM: cạnh chung

=> tam giác OAM = tam giác OBM (cạnh góc cạnh)

=> AMO = BMO

Ta có: AMO + BMO = 1800 (kề bù)

Mà AMO = BMO

=> AMO = BMO = 1/2 1800 = 900

Vậy OI là đường trung trực của đoạn AB

e/ Gọi phân giác của góc O cắt CD tại N

Xét tam giác INC = tam giác IND có

IN: cạnh chung

DIN = CIN

ID = IC

=> tam giác INC = tam giác IND (cạnh góc cạnh)

=> INC = IND

Ta có; IND + INC =1800 (kề bù)

Mà INC = IND

=> INC =IND = 1/2 1800 = 900

=> IN là trung trực của CD

Ta có: IN là trung trực của CD

OI là trung trực của AB

=> AB//CD

16 tháng 10 2016

Xét tam giác AOC và tam giác BOC có:

AO = BO (gt)

AOC = BOC (OC là tia phân giác của AOB)

OC là cạnh chung

=> Tam giác AOC = Tam giác BOC (c.g.c)

OA = OB (gt)

=> Tam giác OAB cân tại O

mà OI là tia phân giác của AOB

=> OI là đường trung trực của tam giác OAB

=> I là trung điểm của AB

     OI _I_ AB

16 tháng 10 2016

Ta có hình vẽ:

x O y z A B C I

Vì Oz là phân giác của xOy nên \(xOz=zOy=\frac{xOy}{2}\)

Xét Δ AOC và Δ BOC có:

OA = OB (gt)

góc AOC = góc BOC (chứng minh trên)

OC là cạnh chung

Do đó, Δ AOC = Δ BOC (c.g.c) (đpcm)

Vì Δ AOC = Δ BOC nên AC = BC (2 cạnh tương ứng)

góc ACO = góc BCO (2 góc tương ứng)

Xét Δ AIC và Δ BIC có:

AC = BC (chứng minh trên)

góc ACI = BCI (chứng minh trên)

CI là cạnh chung

Do đó, Δ AIC = Δ BIC (c.g.c)

=> AI = IB (2 cạnh tương ứng)

=> I là trung điểm của đoạn AB (đpcm)

Vì Δ AIC = Δ BIC nên góc AIC = BIC (2 góc tương ứng)

Lại có: AIC + BIC = 180o (kề bù)

Do đó, góc AIC = góc BIC = 90o

=> \(AB\perp OC\left(đpcm\right)\)

 

 

15 tháng 8 2016

x O y A B H K

15 tháng 8 2016

Mình biết vẽ hình rồi, bạn giải giùm mình thôi nha^^

a: Xét ΔODK và ΔOIE có 

OD=OI

\(\widehat{DOK}\) chung

OK=OE

Do đó: ΔODK=ΔOIE

Suy ra: DK=IE

b: XétΔAIK và ΔADE có 

\(\widehat{AIK}=\widehat{ADE}\)

IK=DE

\(\widehat{AKI}=\widehat{AED}\)

DO đó: ΔAIK=ΔADE

30 tháng 11 2016

Xét tam giác AOH và tam giác BOH có:

AO = BO (gt)

AOH = BOH (OH là tia phân giác của AOB)

OH chung

=> Tam giác AOH = Tam giác BOH (2 cạnh tương ứng)

=> AH = BH (2 cạnh tương ứng)

=> OH là đường trung tuyến của tam giác OAB cân tại O (OA = OB)

=> OH là đường cao của tam giác OAB cân tại O

=> OH _I_ AB

30 tháng 11 2016

Xét tam giác AOH và tam giác BOH có :

AO=BO (GT)

AOH=BOH

OH là cạnh chung.............................

Giải tiếp nhe !!! Mình bận việc ời :(((

18 tháng 8 2019

a, Vì Oz là tia phân giác của xOy

=> xOz = zOy = xOy/2 = 60o/2 = 30o

b, Xét △OIA và △ OIB

Có: OA = OB 

      AOI = IOB

      OT là cạnh chung

=>  △OIA = △OIB (c.g.c)

c, Vì △OIA = △OIB

=> AIO = OIB (2 góc tương ứng)

Mà AIO + OIB = 180(2 góc kề bù)

=> AIO = OIB = 90o  

=> OI vuông góc AB

18 tháng 8 2019

Hình dễ tự vẽ

a ) Oz là tia p/g của góc xOy => \(\widehat{xOz}=\widehat{zOy}=\frac{1}{2}.\widehat{xOy}=30^o\)

=> góc zOy = 30 độ

b ) Xét tam giác OIA và tam giác OIB có :

OA = OB ( gt )

\(\widehat{xOz}=\widehat{zOy}\)( Oz là tia p/g của góc xOy )

OI là cạnh chung

=> Tam giác OIA = Tam giác OIB ( c.g.c )

b ) Do tam giác OIA = tam giác OIB ( cm trên ) => \(\widehat{OIA}=\widehat{OIB}\)

Ta có :

\(\widehat{OIA}+\widehat{OIB}=180^o\)( hai góc kề bù )

\(\widehat{OIA}+\widehat{OIA}=180^o\)

\(\widehat{OIA}.2=180^o\)

=> \(\widehat{OIA}=90^o\)

=> OI vuông góc với AB 

29 tháng 11 2019

O y x B A z I H 1 2

GT : \(\widehat{xOy};\) \(\widehat{O_1}=\widehat{O_2}\); OA= OB

       \(I\in z\left(I\ne O\right)\);

        b, AB cắt Oz tại H

KL : a, Tam giác OAI = tam giác OIB

       b, HA = HB 

      c, AB \(\perp\)Oz

29 tháng 11 2019

a, Xét tam giác OBI và tam giác OAI có :

            OI : cạnh chung

            \(\widehat{O_1}=\widehat{O_2}\)( gt)

            OB = OA (gt )

\(\Rightarrow\)tam giác OBI =  tam giác OAI ( c - g - c )

2 tháng 1 2017

1.Xét tam giác OAM và tam giác OBM,ta có:

Cạnh OM là cạnh chung

OA = OB (gt)

góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)

=> Tam giác OAM = tam giác OBM (c.g.c)

=> MA = MB ( 2 cạnh tương ứng)

2.Ta có: MA = MB (cmt)

=> Tam giác AMB là tam giác cân

góc MAH = góc MBH ( cmt)

MA = MB ( cmt)

góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)

=> tam giác AMH và tam giác BMH ( g.c.g)

=> AH = HB ( 2 cạnh tương ứng)

=> H là trung điểm của AB (1)

Vì tam giác AMH = tam giác BMH (cmt)

=>góc MHA = góc MHB ( 2 góc tương ứng)

mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)

=> góc MHA = góc MHB= 180 độ : 2 = 90 độ

=> MH vuông góc với AB (2)

Từ (1) và (2) => MH là đường trung trực của AB

=> OM là đường trung trực của AB ( vì H thuộc OM )

3.Vì H là trung điểm của AB (cmt)

=> AH =HB = AB : 2 = 6 :2 = 3 (cm)

Xét tam giác OAH vuông tại H

Ta có OA2 =OH2+AH2 (định lý pi ta gô)

\(\Rightarrow\)52=OH2+32

\(\Rightarrow\)25=OH2+9

\(\Rightarrow\)OH2 =25-9

\(\Rightarrow\)OH2=16

\(\Rightarrow\)OH2=\(\sqrt{16}\)

\(\Rightarrow\)OH2=4

23 tháng 12 2016

ukCathy Trang

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNHBài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng : a) AE = BC; b)AB // ECBài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BCBài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân...
Đọc tiếp

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNH

Bài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng :

a) AE = BC; b)AB // EC

Bài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BC

Bài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân giác của góc xOy cắt AB ở C. Chứng minh rằng

a) C là trung điểm của AB

b) AB vuông góc với OC

Bài 4: Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Trên tia đối của tia BC và CB lấy tương ứng hai điểm D và E sao cho BD = CE. Chứng minh rằng AM là tia phân giác của góc BAC và DAE

Bài 5: Cho tam giác ABC có góc A = 1000, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA

a) Tính số đo góc ABK

b) về phía ngoài tam giác ABC, vẽ các đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Chứng minh rằng: tam giác ABK bằng tam giác DAK

c) Chứng minh MA vuông góc với DE

Bài 6: Cho tam giác ABC, D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Chứng minh rằng DE//BC và DE = 1/2 BC

Bài 7: Cho tam giác ABC vuông tại A, M là trung điểm của BC. Chứng minh rằng AM =1/2BC

Bài 8: Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC

a) Chứng minh rằng DE vuông góc với BC

b) Cho biết 4B = 5C trung điểm của BC. Chứng minh rằng :

a) FH = 2DE.

b) FH vuông góc với DE.

3
15 tháng 12 2016

nhìu quá bn à TTvTT

23 tháng 12 2016

từ từ thui