K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

c nhé bạn

14 tháng 10 2023

C.36m2

2 tháng 6 2020

đấu 

~ là đấu đồng dạng nha

23 tháng 6 2020

Mình giải bài 2 đại số nhé :3

CM : \(a^2+b^2+c^2\ge ab+bc+ac\left(1\right)\\ \left(1\right)\Leftrightarrow a^2+b^2+c^2-ab-bc-ac\ge0\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) (luôn luông đúng)

23 tháng 6 2020

c.ơn ạ yeu

9 tháng 5 2018

Bài 1:

C A B E H D

Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)

Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)

      \(\widehat{CAB}=\widehat{ANB}=90^o\)

\(\Rightarrow\Delta ABC~\Delta AHB\)

b) \(\frac{AB}{NB}=\frac{AC}{NA}\)

\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)

Chứng minh tương tự: 

\(\Delta ABC~\Delta AHB\)

\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)

Xét tam giác vuông.

Áp dụng định lý Pi-ta-go, ta có: 

\(DB^2=AB^2+AD^2=6^2+8^2=100\)

\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)

Bài 2: 

1 1 2 2 A B C D

a) Xét \(\Delta OAV\text{ và }\Delta OCD\)

Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)

     \(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)

\(\Rightarrow\Delta OAB~\Delta OCD\)

\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)

b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)

\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)

\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)

\(AC^2-DC^2=AD^2\left(1\right)\)

\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)

\(BD^2-AB^2=AD^2\)

\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)

9 tháng 5 2018

cảm ơn bạn nhé