Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S o B H A D G d H' C K
Câu a bạn tự tính nhé!
Câu b: Qua G kẻ đường thẳng d // CD , khoảng cách từ \(d\left(G;\left(SAB\right)\right)=d\left(d;\left(SAD\right)\right)\)
Kẻ HH' vuông CD , nối SH'. Lúc này SH' cách d tại K . \(d\left(K;\left(SAB\right)\right)\) là khoảng cách cần tìm.
Ta có: SH'AB =\(\frac{1}{2}S_{ABCD}\)=\(\frac{1}{2}\times2\sqrt{3}a^2=\sqrt{3}a^2\) \(\Rightarrow HH'=\frac{\sqrt{3}a^2}{a}=\sqrt{3}a\)
Vì K nằm trên d nên \(d\left(K;\left(SAB\right)\right)=\frac{2}{3}HH'=\frac{2\sqrt{3}a}{3}\)
) Gọi P là tr/điểm AS
=> SA v/góc BP (t/giác SAB đêu)
SA v/góc BM =>SA v/góc (BPM)
Gọi P, Q lần lượt là tr/điểm AS và AJ
=> PQ là đ/t/bình t/giác ASJ
=> SJ // PQ. Mặt khác, t/giác SAJ có:
vuông tại S
=> AS v/góc SJ => AS v/góc PQ
Lại có: AS v/góc BP (t/giác SAB đều) => AS v/góc (BPQ) => AS v/góc BQ, lúc đó M là giao điểm BQ và CD.
AB // JM => . Trong t/giác vuông ADM có:
\(\left(1-\dfrac{1}{2}\right)\):\(\left(1-\dfrac{1}{3}\right)\):\(\left(1-\dfrac{1}{4}\right)\):\(\left(1-\dfrac{1}{5}\right)\):\(\left(1-\dfrac{1}{6}\right)\):\(\left(1-\dfrac{1}{7}\right)\)
=\(\left(\dfrac{2-1}{2}\right)\):\(\left(\dfrac{3-1}{3}\right)\):\(\left(\dfrac{4-1}{4}\right)\):\(\left(\dfrac{5-1}{5}\right)\):\(\left(\dfrac{6-1}{6}\right)\)
=\(\dfrac{1}{2}\):\(\dfrac{2}{3}\):\(\dfrac{3}{4}\):\(\dfrac{4}{5}\):\(\dfrac{5}{6}\)
=\(\dfrac{1.\left(3.4.5\right)6}{\left(3.4.5\right)\left(2.2\right)}\)
=\(\dfrac{6}{2.2}=\dfrac{3}{2}\)
ta có (SBD) giao với (ABCD) theo gt BD
BD vuông AC và BD vuong SA nên BD vuông (SAC)
góc đó là góc SOA
xét tam giác vuông SAO có tan 60*=SA/ÁO mà AC= a căn 2 nên ÁO=a căn 2 trên 2
=>SA=a căn 6 trên 2
xét VSABCD =SB.SC =1/2.1/2=1/4 (M,N là trung diểm)
VSAMND SM.SN
MÀ VSABCD=1/3.SA.SABCD=1/3.a căn 6/2.a^2=a^3 căn 6/6
=>VSAMND=1/4.VSABCD=a căn 6/24
Đáp án A