K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

a) Tính \(V_{S.ABM}\)

Tam giác ABC cân tại A , SBC cân tại S \(\Rightarrow AM\perp BC;SM\perp BC\) tại M

Vì mp(SBC) vuông góc với mặt đáy suy ra SM vuông góc với mặt đáy

Góc giữa SB và mặt đáy là góc SBM=300

\(\Rightarrow SM=BMtan.\widehat{SBM}=\frac{a}{2}.tan30^0=\frac{a}{2\sqrt{3}}\)

\(\Rightarrow V_{S.ABM}=\frac{1}{3}.SM.S_{ABM}=\frac{1}{3}.\frac{a}{2\sqrt{3}}.\frac{1}{2}.\frac{a}{2}.\frac{a\sqrt{3}}{2}=\frac{a^3}{48}\)

b) Tính k/c SB và AM

Kẻ MH vuông góc với SB tại H

Dễ dàng chứng minh MH là đoạn vuông góc chung giữa SB và AM

Vậy khảong cách giữa SB và AM bằng đoạn MH và bằng \(\frac{BM}{cos.\widehat{HBM}}=\frac{\frac{a}{2}}{cos30^0}=\frac{a}{\sqrt{3}}\)

23 tháng 4 2020

Bạn làm không đúng rồi bạn ơi

21 tháng 4 2018

10 tháng 10 2017

Đáp án B

Gọi I, E, F lần lượt là trung điểm của AC, AB, HC. IE là trục đường tròn ngoại tiếp tam giác AHB, IF là trục đường tròn ngoại tiếp tam giác HKC.

⇒ IA=IB=IC=IH=IK

Suy ra I là tâm mặt cầu ngoại tiếp tứ diện AHKB.

Suy ra bán kính R= a 2 2

5 tháng 1 2020

15 tháng 12 2016

tam giác ABC cân tại S là sao vậy bạn

 

2 tháng 4 2016

S B M H A E N C D

Gọi H là hình chiếu vuông góc của S lên AB, suy ra \(SH\perp\left(ABCD\right)\)

Do đó, SH là đường cao của hình chóp S.BMDN

Ta có : \(SA^2+SB^2=a^2+3a^2=AB^2\)

Nên tam giác SAB là tam giác vuông tại S.

Suy ra : \(SM=\frac{AB}{2}=a\) Do đó tam giác SAM là tam giác đều, suy ra \(SH=\frac{a\sqrt{3}}{3}\)

Diện tích của tứ giác BMDN là \(S_{BMDN}=\frac{1}{2}S_{ABCD}=2a^2\)

Thể tích của khối chóp S.BMDN là \(V=\frac{1}{3}SH.S_{BMDN}=\frac{a^3\sqrt{3}}{3}\)

Kẻ ME song song với DN (E thuộc AD)

Suy ra : \(AE=\frac{a}{2}\) Đặt \(\alpha\) là góc giữa 2 đường thẳng SM và DN

Ta có \(\left(\widehat{SM,ME}\right)=\alpha\), theo định lý 3 đường vuông góc ta có \(SA\perp AE\)

Suy ra :

\(SE=\sqrt{SA^2+AE^2}=\frac{a\sqrt{5}}{2};ME=\sqrt{AM^2+AE^2}=\frac{a\sqrt{5}}{2}\)

Tam giác SME là tam giác cân tại E nên \(\begin{cases}\widehat{SME}=\alpha\\\cos\alpha=\frac{\frac{a}{2}}{\frac{a\sqrt{5}}{2}}=\frac{\sqrt{5}}{5}\end{cases}\)

 

 

14 tháng 4 2019

Cho mình hỏi, tam giác cân thì tại sao lại suy ra cos góc kia như thế ??

29 tháng 11 2016

Dễ dàng chứng minh MN // BC

Xét \(\Delta SBC\) có MN // BC và MN đi qua trọng tâm G

\(\Rightarrow\) \(\begin{cases}SM=\frac{2}{3}SB\\SN=\frac{2}{3}SC\end{cases}\)

Sử dụng công thức tỉ lệ thể tích đố với 2 khối tứ diện S.AMN và S.ABC ta có

\(\frac{V_{S.AMN}}{V_{S.ABC}}=\frac{SA}{SA}.\frac{SM}{SB}.\frac{SN}{SC}=1.\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\\ \Rightarrow V_{S.AMN}=\frac{4}{9}.V_{S.ABC}\)

Tính được \(V_{S.ABC}=\frac{1}{6}SA.AB.BC=\frac{a^3}{6}\)

\(\Rightarrow V_{S.AMN}=\frac{2a^3}{27}\)

14 tháng 8 2016

Kẻ SH vuông góc với BC tại H => SH vuông góc với (ABC) 
Kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N 
Ta có góc SMH = góc SNH = 60 độ 
Dễ thấy tam giác SHM = tam giác SHN => HM = HN 
Ta có HM = HB.sin 30 = 1/2 HB hay HB = 2 HM 
HN = HC.sin 60 = HC.căn 3 /2 => HC = 2/căn 3.HN = 2/căn 3 .HM 
=> BC = a = HB + HC = ( 2 + 2/căn 3).HM 
=> HM = a/(2 + 2/căn 3) = a.căn 3 /(2+ 2.căn 3) 
=> SH = HM.tan 60 = 3a/(2+2.căn 3) 
Có AB = BC/2 = a/2 
AC = BC.căn 3/2 = a.căn 3/2 
S(ABC) = 1/2.AB.AC = 1/8.a^2.căn 3 
=> V(SABC) = 1/3.3a/(2+2.căn 3) . 1/8.a^2.căn 3 = a^3.căn 3 /[16.(1+ căn 3)]