Cho hình bình hành ABCD có cạnh AD = a và AB = 2a. Gọi M, N lần lượt là trung điểm của AB và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

A B M C N D P Q

a) Do AB = 2a, AD = A nên AB = 2AD.

Lại có ABCD là hình bình hành nên AB = CD. Vậy thì \(DN=\frac{CD}{2}=\frac{AB}{2}=AD\)

Xét tam giác ADN có DA = DN nên ADN là tam giác cân tại D.

Do tam giác ADN cân tại D nên \(\widehat{DAN}=\widehat{DNA}\) 

Do AB//DC nên \(\widehat{BAN}=\widehat{DNA}\) (Hai góc so le trong)

Vậy nên \(\widehat{DAN}=\widehat{BAN}\) hay AN là phân giác góc \(\widehat{BAD}\)

b) Ta có \(MB=\frac{1}{2}AB;DN=\frac{1}{2}DC\Rightarrow\) MB song song và bằng ND.

Xét tứ giác MDNB có MB song song và bằng ND hay MDNB là hình bình hành.

Vậy thì MD // NB

c) Tương tự câu b, ta chứng minh được AMCN là hình bình hành hay AN // MC

Xét tứ giác MPNQ có MP//QN và MQ//PN nên MPNQ là hình bình hành.

Xét tứ giác AMND có AM song song và bằng ND hay AMND là hình bình hành.

Lại có AD = AM nên AMND là hình thoi. Suy ra AN vuông góc DM hay \(\widehat{MPN}=90^o\) .

Xét hình bình hành MPNQ có \(\widehat{MPN}=90^o\) nên MPNQ là hình chữ nhật.

22 tháng 10 2019

toi ko bt

22 tháng 10 2019

https://drive.google.com/file/d/1F7_WT5J17JGrHKXFz0mns6lWgsUhJcNq/view

14 tháng 9 2021

a) Ta có  :

P là trung điểm AB

Q là trung điểm AC

 PQ là đường trung bình tam giác ABC

Xét tứ giác BPQC , ta có :

PQ//BC( do PQ là đường trung bình tam giác ABC)

BPQC là hình thang (dấu hiệu nhận biết hình thang)

b)Ta có :

Q là trung điểm PE

Q là trung điểm AC

 Q là trung điểm hai đường chéo của tứ giác AECP

Suy ra tứ giác AECP là hình bình hành 

14 tháng 9 2021

a) Ta có  :

P là trung điểm AB

Q là trung điểm AC

⇒ PQ là đường trung bình tam giác ABC

Xét tứ giác BPQC , ta có :

PQ//BC( do PQ là đường trung bình tam giác ABC)

⇒BPQC là hình thang (dấu hiệu nhận biết hình thang)

15 tháng 12 2021

undefined

15 tháng 12 2021

a) Vì ABCD là hình bình hành nên

AB=CD=2a, AD=BC=a

ta có: M,N là trung điểm của AB và CD

=> DN=1/2CD=a

=> AD=DN

Vậy tam giác ADN cân tại D(đpcm)

=> DAN=DNA

b) Ta có: AB//CD => AND=MAN(So le trong)

=> DAN=MAN

=>AN là tia phân giác của góc BAD

 

8 tháng 11 2018

a)xét tứ giác ADME có

CÂB =AÊM=góc ADM=900

=>ADME là hcn

b)vì MA là đg trung tuyến nên MA=MC=MB

xét tam giác CMA có

CM=MA(cmt)

CÊM=AÊM=900

EM là cạnh chung

=>...(cạnh huyền-cạnh góc vuông)

=>CE=EA

mà EA=MD(EAMD là hcn) nên CE=MD (1)

ta có MA=MC(cmt)

mà MA=ED(EAMD là hcn)

=>MC=ED (2)

xét tứ giác CMDE có CE=MD,CM=ED( 1 và 2)

=>CMED là hbh

c)

xét tam giác MDB vuông tại D có DI là trung tuyến nên MI=IB=ID

xét tứ giác MKDI có

KM=KD(K là giao điểm hai dg chéo của hcn)

KM=MI(vì MA=MB mà K và I lần lượt là trung điểm của chúng)

MI=ID(cmt)

=>KMID là thoi

mà KI là đg chéo của góc I nên KI cũng là p/g của góc I

(ck hk tốt nhé)

2 tháng 4 2020

a, Do ABCD là hình bình hành ( gt ) 

=> BAD + ADC = 180 độ ( t/c hbh )

Mà BAD = 120 độ ( gt ) => ADC = 60 độ

Gọi đường phân giác của góc ADC đi qua trung điểm cạnh AB là DI

=> ADI = CDI = 30 độ

Xét tam giác ADI có : DAI + ADI + AID = 180 độ ( tổng 3 góc của 1 tam giác )

=> AID = ADI = 30 độ => Tam giác AID cân

=> AI = AD mà AI = 1/2 AB => AD = 1/2 AB hay AB = 2.AD ( đpcm )

b, CM ADF đều 

Do ABCD là hbh ( gt ) => AB = CD ( t/c hbh )

=> 1/2 AB = 1/2 CD => AI = BI = DF = CF

mà AI = AD => AD = DF

=> tam giác ADF cân tại D có góc ADF = 60 độ ( cmt )

=> ADF đều

CM AFC cân : 

DO tam giác ADF đều ( cmt ) => AF = DF ( t/c tg đều )

mà DF = FC ( gt ) => AF = FC => tam giác AFC cân tại F ( đpcm )

c, Ta có : AF = DF = CF ( cmt ) 

=> AF = 1/2 ( DF +CF ) => AF = 1/2 CD

Xét tam giác ADC có AF là trung tuyến ứng với cạnh CD

và AF = 1/2CD 

=> tam giác ADC vuông tại A ( dấu hiệu nhận biết tam giác vuông )

=> AD vuông góc với AD ( Đpcm )