K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

Theo giả thiết 2,5 = a . 1 +3.

\(\Rightarrow\) a = 2,5 - 3 = -0,5.

30 tháng 5 2017

Đường thẳng song song và đường thẳng cắt nhau

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang

23 tháng 4 2017

a) Vì đồ thi của hàm số đi qua điểm A(2; 6) nên ta có 6 = a.2 + 3.

Suy ra hệ số góc a = 3/2 và được hàm số y = 3/2x + 3do thi bai 27

b) Hàm số đã cho là y = 3/2x + 3. Đồ thị được vẽ như hình bên.

23 tháng 4 2017

Bài giải:

a) Vì đồ thi của hàm số đi qua điểm A(2; 6) nên ta có 6 = a . 2 + 3.

Suy ra hệ số góc a = 1, 5.

b) Hàm số đã cho là y = 1,5x + 3. Đồ thị được vẽ như hình bên.


23 tháng 11 2018

a, Vì \(1-\sqrt{5}< 0\)nên hàm nghịch biến

b, \(x=1+\sqrt{5}x\)

\(\Leftrightarrow x-x\sqrt{5}=1\)

\(\Leftrightarrow x\left(1-\sqrt{5}\right)=1\)

\(\Leftrightarrow x=\frac{1}{1-\sqrt{5}}\)

Khi đó \(y=\left(1-\sqrt{5}\right).\frac{1}{1-\sqrt{5}}-1=1-1=0\)

b, \(y=-\sqrt{5}\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)x-1=-\sqrt{5}\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)x=1-\sqrt{5}\)

<=> x = 1

21 tháng 7 2020

a) Ta có \(a=1-\sqrt{5}< 0\) nên hàm số đã cho nghịch biến trên R.

b) Khi \(x=1+\sqrt{5}\) ta có:

\(y=\left(1-\sqrt{5}\right).\left(1+\sqrt{5}\right)-1=\left(1-5\right)-1=-5\)

22 tháng 4 2017

a) y = 1 - 5x là một hàm số bậc nhất với a = -5, b = 1. Đó là một hàm số nghịch biến vì -5 < 0.

b) y = -0,5x là một hàm bậc nhất với a \(\approx\)-0,5, b = 0. Đó là một hàm số nghịch biến vì -0,5 < 0.

c) y = \(\sqrt{ }\)2(x - 1) + \(\sqrt{ }\)3 là một hàm số bậc nhất với a = \(\sqrt{ }\)2, b = \(\sqrt{ }\)3 - \(\sqrt{ }\)2. Đó là một hàm số đồng biến vì \(\sqrt{ }\)2 > 0.

d) y = 2x2 + 3 không phải là một hàm số bậc nhất vì nó không có dạng y = ax + b, với a \(\ne\) 0.


23 tháng 4 2017

Bài giải:

a) m = -1; b) m ≠ -1.


23 tháng 4 2017

Bài giải:

a) a = -2.

b) Ta có 7 = a . 2 + 3. Suy ra a = 2.