Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đồ thị được vẽ như hình bên.
b) Gọi α là góc giữa đường thẳng y = -2x + 3 và trục Ox.
Thế thì = 1800 - α.
Ta có tg = = = 2.
Suy ra ≈ 63026’
Vậy α ≈ 116034’.
Bài giải:
a) Đồ thị được vẽ như hình bên.
b) Gọi α là góc giữa đường thẳng y = -2x + 3 và trục Ox.
Thế thì = 1800 - α.
Ta có tg = = = 2.
Suy ra ≈ 63026’
Vậy α ≈ 116034
a) Đồ thị như hình bên.
b) tgα = = 1,
tgβ = = = ,
tgɣ = = = √3.
Suy ra α = 450, β = 300, ɣ = 600 .
a) Đồ thị như hình bên.
b) tgα = = 1,
tgβ = = = ,
tgɣ = = = √3.
Suy ra α = 450, β = 300, ɣ = 600 .
câu a: khi m= 2 => y=2x+2
y y=2x+2 x -1 2 0
với x=0=> y =2
với y=0 =>x -1
câu b : y = xm+2 cắt ox,oy lần lượt tại A,B mà tam giác OAB cân tại O nên OB=OA \(OA^2=OB^2\)
Y X 0 A B
Với x=0=>y=2 => A(0,2) => \(0A=\sqrt{0^2+2^2}=2\)
Với y=0=> x= \(x=\frac{-2}{m}\)nên \(B\left(\frac{-2}{m},0\right)\) ,\(OB=\sqrt{\frac{4}{m^2}+0^2}=\sqrt{\frac{4}{m^2}}\)
theo giả thiết OA=OB nên \(\sqrt{\frac{4}{m^2}}=\sqrt{4}\Leftrightarrow m^2=1\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)
(đơn vị đo trên các trục tọa độ là xentimet)
Lời giải:
a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x. Vẽ đường thẳng qua B(0; 2) và E(-1; 0) được đồ thị hàm số y = 2x + 2.
b) Tìm tọa độ của điểm A: giải phương trình 2x + 2 = x, tìm được x = -2. Từ đó tìm được x = -2, từ đó tính được y = -2, ta có A(-2; -2).
c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.
a) Đồ thị hàm số \(y=x\) là 1 đường thẳng đi qua 2 điểm O \(\left(0;0\right)\) và E\(\left(1;1\right)\)
Đồ thị hàm số \(y=2x+2\) là 1 đường thẳng đi qua 2 điểm B \(\left(0;2\right)\) và D \(\left(-1;0\right)\)
b) Hoành độ giao điểm A của 2 đường thẳng đã cho là nghiệm của pt:
\(x=2x+2\)
\(\Leftrightarrow\) \(x-2x=2\)
\(\Leftrightarrow\) \(-x=2\)
\(\Leftrightarrow\) \(x=-2\)
Tại \(x=-2\) thì giá trị của y là: \(y=2.\left(-2\right)+2=-2\)
Vậy tọa độ điểm A \(\left(-2;-2\right)\)
c) Đường thẳng song song với trục tung Ox và cắt trục hoành tại điểm B(0;2)
\(\Rightarrow\) Suy ra phương trình đường thẳng có dạng \(y=2x\)
Hoành độ giao điểm C của 2 đường thẳng y=2x và y=x là nghiệm của pt: 2x=x
\(\Rightarrow\) Tọa độ điểm C (2;2)
\(S_{ABC}=S_{ADO}+S_{BCOD}\)
a) * Vẽ đồ thị hàm số y = 0,5x + 2 (1)
Cho x = 0, tính được y = 2 => D(0; 2) thuộc đồ thị.
Cho y = 0, 0 = 0,5.x + 2 => x = -4 => A(-4; 0) thuộc đồ thị. Đường thẳng vẽ qua A, D là đồ thị của (1).
*Vẽ đồ thị hàm số y = 5 – 2x (2)
-Cho x = 0 tính được y = 5 E(0; 5) thuộc đồ thị
-Cho y = 0, 0 = 5 – 2x => x = 2,5 => B(2,5; 0) thuộc đồ thị. Đường thẳng vẽ qua B, E là đồ thị của (2).
b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.
Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.
Vậy hàm số đã cho là y = √3x + 5.
Bài giải:
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.
Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.
Vậy hàm số đã cho là y = √3x + 5
a) Xét x = 0 => y = 1
Xét y = 0 => x = 1/3
y x O 1/3 1 y=-3x+1
b) Xét \(tan_{\alpha}=\dfrac{1}{\dfrac{1}{3}}=3=>\alpha=71^o33'\)