K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

Đáp án A

Gọi ∆ là đường thẳng song song với  d thỏa ,mãn đầu bài

Do ∆ song song với đường thẳng d nên đường thẳng ∆ có dạng:

∆: x- 2y+ c= 0

Theo giả thiết:  d   d ;   ∆ = 5   n ê n   c - 2 = 5

Suy ra:c= 7 hoặc c= -3

Vậy có 2 đường thẳng thỏa mãn là : x- 2y+ 7 =0 và x- 2y – 3= 0

12 tháng 4 2016

Đường tròn tiếp xúc với đường thẳng d nên khoảng cách từ tâm I tới đường thẳng d phải bằng bán kính đường tròn:

d(I; d) = R

Ta có :  R = d(I; d) =  = 

Phương trình đường tròn cần tìm là:

(x +1)2 + (y – 2)     =>( x +1)2 + (y – 2)

<=> 5x2 + 5y2 +10x – 20y +21 = 0

30 tháng 5 2020

5x2 + 5y2 +10x – 20y +6 mà

11 tháng 4 2017

Giả sử: \(d_{\left(M,\Delta_1\right)}=d_{\left(M,\Delta_2\right)}\)

\(\Rightarrow\dfrac{\left|2x+4y+7\right|}{\sqrt{2^2+4^2}}=\dfrac{\left|x-2y-3\right|}{\sqrt{1^2+2^2}}\)

\(\Rightarrow\sqrt{5}\left|2x+4y+7\right|=2\sqrt{5}\left|x-2y-3\right|\)

\(\Rightarrow\left|2x+4y+7\right|=2\left|x-2y-3\right|\)

* \(2x+4y+7=2\left(x-2y-3\right)\)

\(\Rightarrow8y+13=0\)

*\(2x+4y+7=-2\left(x-2y-3\right)\)

\(\Rightarrow4x+1=0\)

NV
29 tháng 5 2020

d' song song d nên có dạng: \(x-2y+c=0\)

Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d

\(\Rightarrow d\left(A;d'\right)=\sqrt{5}\)

\(\Leftrightarrow\frac{\left|0.1-2.1+c\right|}{\sqrt{1^2+\left(-2\right)^2}}=\sqrt{5}\)

\(\Leftrightarrow\left|c-2\right|=5\Rightarrow\left[{}\begin{matrix}c=7\\c=-3\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-2y+7=0\\x-3y-3=0\end{matrix}\right.\)

27 tháng 5 2020

M ∈ Δ => M( 1 + 2m ; m)

Do AM // d nên \(\overrightarrow{n_{AM}}=\overrightarrow{n_d}=\left(4;-3\right)\)

Phương trình AM có dạng: 4(x -1 - 2m) - 3(y - m) = 0

Mà A ∈ AM nên: 4(-1 -1 - 2m) - 3(3 - m) = 0

⇔ m= \(\frac{-17}{5}\) => M(\(\frac{-29}{5};\frac{-17}{5}\))

NV
18 tháng 6 2020

Đường tròn tâm \(I\left(3;-1\right)\) bán kính \(R=\sqrt{3^2+\left(-1\right)^2-6}=2\)

Các đường thẳng gọi hết là d cho dễ kí hiệu

b/ \(\overrightarrow{MI}=\left(2;-4\right)=2\left(1;-2\right)\)

d đi qua M và vuông góc IM nên nhận (1;-2) là 1 vtpt

Pt d: \(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)

c/ Thay tọa độ N vào đường tròn thỏa mãn \(\Rightarrow N\in\left(C\right)\) \(\Rightarrow IN\perp d\)

\(\overrightarrow{IN}=\left(0;2\right)=2\left(0;1\right)\Rightarrow\) d nhận (0;1) là 1 vtpt và qua N

Pt d: \(0\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow y-1=0\)

d/ d song song d1 nên pt có dạng: \(5x+12y+c=0\) (với \(c\ne-2019\))

d tiếp xúc (C) nên \(d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|5.3-12.1+c\right|}{\sqrt{5^2+12^2}}=2\Leftrightarrow\left|c+3\right|=26\Rightarrow\left[{}\begin{matrix}c=23\\c=-29\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}5x+12y+23=0\\5x+12y-26=0\end{matrix}\right.\)

e/ Tiếp tuyến vuông góc d2 nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình d có dạng: \(2x-y+c=0\)

d tiếp xúc (C) \(\Rightarrow d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|2.3-1.\left(-1\right)+c\right|}{\sqrt{2^2+1^2}}=2\Leftrightarrow\left|c+7\right|=2\sqrt{5}\Rightarrow\left[{}\begin{matrix}c=-7+2\sqrt{5}\\c=-7-2\sqrt{5}\end{matrix}\right.\)

Có 2 tt thỏa mãn: \(\left[{}\begin{matrix}2x-y-7+2\sqrt{5}=0\\2x-y-7-2\sqrt{5}=0\end{matrix}\right.\)