K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2018

Giải bài 51 trang 77 SGK Toán 7 Tập 2 | Giải toán lớp 7

a) Ta có: PA = PB (A; B nằm trên cung tròn tâm P) nên P nằm trên đường trung trực của AB.

CA = CB (C nằm trên 2 cung tròn tâm A, B bán kính bằng nhau) nên C nằm trên đường trung trực của AB.

Vậy CP là đường trung trực của AB, suy ra PC ⊥ d.

QUẢNG CÁO

b) Một cách vẽ khác

- Lấy hai điểm A, B bất kì trên d.

- Vẽ cung tròn tâm A bán kính AP, cung tròn tâm B bán kính BP. Hai cung tròn cắt nhau tại C (C khác P).

- Vẽ đường thẳng PC. Khi đó PC là đường đi qua P và vuông góc với d.

Giải bài 51 trang 77 SGK Toán 7 Tập 2 | Giải toán lớp 7

Chứng minh :

- Theo định lí 2 :

PA = CA ( P,C cùng thuộc cung tròn tâm A bán kính PA)

⇒ A thuộc đường trung trực của PC.

PB = CB (P, C cùng thuộc cung tròn tâm B bán kính PB)

⇒ B thuộc đường trung trực của PC.

⇒ AB là đường trung trực của PC

⇒ PC ⏊ AB hay PC ⏊ d.

19 tháng 4 2017

a) Ta có PA = PB (A, B nằm trên cung tròn có tâm P) CA = CB (hai cung tròn AB có tâm A và B có bán kính bằng nhau; C la giao điểm của 2 cung)

Vậy P; C cách đều A và B nên đường thẳng CP là đường trung trực của AB nên

PC ⊥ d

b) Một cách vẽ khác

- Lấy điểm A bất kì trên d

- Vẽ cung tròn tâm A bán kính AP cắt đường thẳng d tại M

- Vẽ cung tròn tâm M bán kính MP cắt cung tròn tâm A tại C

- Vẽ đường thẳng PC, đường thẳng PC chính là đường vuông góc với d.

=> PC ⊥ d (đpcm)

19 tháng 4 2017

Hướng dẫn:

a) Ta có PA = PB (A, B nằm trên cung tròn có tâm P) CA = CB (hai cung tròn AB có tâm A và B có bán kính bằng nhau; C la giao điểm của 2 cung)

Vậy P; C cách đều A và B nên đường thẳng CP là đường trung trực của AB nên

PC ⊥ d

b) Một cách vẽ khác

- Lấy điểm A bất kì trên d

- Vẽ cung tròn tâm A bán kính AP cắt đường thẳng d tại M

- Vẽ cung tròn tâm M bán kính MP cắt cung tròn tâm A tại C

- Vẽ đường thẳng PC, đường thẳng PC chính là đường vuông góc với d.

=> PC ⊥ d (đpcm)

20 tháng 4 2017

Lời giải:

Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).

5 tháng 7 2017

Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Gọi bán kính cung tròn tâm A là r, bán kính cung tròn tâm B và C là r’.

Xét ΔABD và ΔACD có:

    AB = AC (=r)

    DB = DC (=r')

    AD cạnh chung

Nên ΔABD = ΔACD (c.c.c)

QUẢNG CÁO

Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

- Gọi H là giao điểm của AD và a

ΔAHB và ΔAHC có

    AB = AC (= r)

    Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

    AH cạnh chung

⇒ ΔAHB = ΔAHC (c.g.c)

Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

10 tháng 4 2020

∆ABD và ∆ACD có:

AB = AC (gt)

DB = DC (gt)

AD cạnh chung.

Nên ∆ABD = ∆ACD (c.c.c)

=> A= A2 

Gọi H là giao điểm của AD và a.

∆AHB  và  ∆AHC có:

AB = AC (gt)

A1 = A( cmt ) 

AH cạnh chung.

Nên ∆AHB = ∆AHC (c.g.c)

Suy ra: H1 = H2

Ta lại có:

 H1 + H2 = 180

⇒H= H2 = 90

Vậy AD ⊥ a 

10 tháng 4 2020

P/s : Cứ nghĩ làm xong bài sẽ vẽ hình ai ngờ phần vẽ hình bị lỗi nên lại phải làm lại ( khóc hết nước mắt ) 

                                                                                          Giải 

Xét ∆ABD và ∆ACD có : 

AB = AC (gt)

DB = DC (gt)

AD cạnh chung.

Nên ∆ABD = ∆ACD (c.c.c)

\(\Rightarrow\) BAD = CAD ( 2 góc tương ứng ) 

Gọi H là giao điểm của AD và a 

Xét ∆AHB  và ∆AHC có : 

AB = AC (gt) 

BAH = CAH ( cmt ) 

AH cạnh chung 

Nên ∆AHB = ∆AHC (c.g.c) 

\(\Rightarrow\) AHB = AHC ( 2 góc tương ứng ) 

Ta lại có : 

AHB + AHC = 180 ( 2 góc kề bù ) 

\(\Rightarrow\) AHB = AHC = 90 

\(\Rightarrow\) AH ⊥ BC

\(\Rightarrow\) AD ⊥  a