K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

+ Phương trình đường thẳng d có dang d: y= kx-1  .
Phương trình hoành độ giao điểm của đồ thị C  và đường thẳng d:

2 x 3 - 3 x 2 - 1 = k x - 1   h a y   x ( 2 x 2 - 3 x - k ) = 0 ⇔

+ Để  C cắt d  tại ba điểm phân biệt khi và chỉ khi  phương trình (2)  có hai nghiệm phân biệt khác 0

⇔ ∆ > 0 0 - k ≠ 0 ⇔ k > - 9 8 k ≠ 0

Vậy chọn  k > - 9 8 k ≠ 0

Chọn B.

NV
18 tháng 3 2019

Gọi phương trình d có dạng \(y=kx+b\), do d qua A

\(\Rightarrow5=-k+b\Rightarrow b=k+5\)

\(\Rightarrow\) Phương trình d: \(y=kx+k+5\)

Phương trình hoành độ giao điểm d và (C):

\(-x^3+3x^2+1=kx+k+5\Leftrightarrow x^3-3x^2+4+k\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2+k\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left[\left(x-2\right)^2+k\right]=0\) (1)

Do (1) luôn có nghiệm \(x=-1\Rightarrow\) để d cắt (C) tại 3 điểm phân biệt thì phương trình \(\left(x-2\right)^2+k=0\) có 2 nghiệm phân biệt khác \(-1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(-1-2\right)^2+k\ne0\\\left(x-2\right)^2=-k\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k\ne-9\\-k>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k\ne-9\\k< 0\end{matrix}\right.\)

11 tháng 8 2019

Chọn D.

Phương trình đường thẳng d có hệ số góc k và đi qua I(1; 2) là d: y = k(x - 1) + 2.

Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d:

Để d cắt (C) tại ba điểm phân biệt ⇔ Phương trình (*) có hai nghiệm phân biệt x1; x2 khác 1.

Hơn nữa theo Viet ta có 

 nên I là trung điểm AB.

Vậy chọn k > -3, hay k ∈ (-3;+∞).

22 tháng 6 2017

Đường thẳng d đi qua A và có hệ số góc k nên có dạng y= k( x+ 1)   hay

Kx- y+k=0 .

Phương trình hoành độ giao điểm của C  và  d là:

x 3 - 3 x 2 + 4 = k x + k ⇔ ( x + 1 ) ( x 2 - 4 x + 4 - k ) = 0

D cắt tại ba điểm phân biệt khi phương trình (*) có hai nghiệm phân biệt khác -1

⇔ ∆ ' > 0 g ( - 1 ) ≠ 0 ⇔ k > 0 k ≠   9

Khi đó g( x) =0 khi x=2- k ;   x = 2 + k    Vậy các giao điểm của hai đồ thị lần lượt là

A ( - 1 ;   0 ) ; B ( 2 - k ;   3 k - k k ) ; C ( 2 + k ;   3 k + k k ) .

Tính được

B C = 2 k 1 + k 2 , d ( O , B C ) = d ( O , d ) = k 1 + k 2 .

Khi đó 

S ∆ O B C = 1 2 . k k 2 + 1 . 2 k . k 2 + 1 = 1 ⇔ k k = 1 ⇔ k 3 = 1 ⇔ k = 1 .

 

Vậy k= 1 thỏa yêu cầu bài toán.

Chọn C.

6 tháng 11 2019

Phương trình đường thẳng d; y=k(x-1)+2.

Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d:

x3-3x2+4=  k(x-1)+2. Hay x3-3x2-kx+k+2= 0 (1) 

⇔ ( x - 1 ) ( x 2 - 2 x - k - 2 ) = 0

( C) cắt d  tại ba điểm phân biệt khi  và chỉ khi phương trình  có hai nghiệm phân biệt x1; x2 khác 1

⇔ ∆ ' g > 0 g ( 1 ) ≠ 0 ⇔ k + 3 > 0 - 3 - k ≠ 0 ⇔ k > - 3

Hơn nữa  theo Viet ta có 

x 1 + x 2 = 2 = 2 x I y 1 + y 2 = k ( x 1 + x 2 ) - 2 k + 4 = 4 = 2 y I

nên I  là trung điểm AB.

Vậy chọn k> -3, hay k ∈ (-3; +). Do đó có vô số giá trị k nguyên thỏa mãn yêu cầu bài toán.

Chọn D.

19 tháng 6 2018

Phương trình đường thẳng(d) có hệ số góc k và cắt trục tung tại điểm A   (0;4) là: y = kx +4

Đáp án A

15 tháng 11 2017

+Ta có đạo hàm y’ = 3x2- 6mx+ 3( m+ 1)  .

 Do K thuộc ( C)  và có hoành độ bằng -1, suy ra K( -1; -6m-3)

Khi đó tiếp tuyến tại K  có phương trình

∆: y= ( 9m+ 6) x+ 3m+ 3

Đường thẳng ∆ song song với đường thẳng d

⇒ 3 x + y = 0 ⇔ y = - 3 x ⇔ 9 m + 6 = - 3 3 m + 3 ≠ 0 ⇔ m = - 1 m ≠ - 1

Vậy không tồn tại m thỏa mãn đầu bài.

Chọn D.

19 tháng 12 2016

tìm m để y= tự làm

2 tháng 5 2017

\(y=\dfrac{2x\left(x-1\right)-2}{x-1}=2x-\dfrac{2}{x-1}\)

tiêm cận y=2 x chia đồ thị thành hai nhánh

=> k< 2 PA(D)