Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{-9}{80}=\frac{\left(-9\right)x4}{80x4}=\frac{-36}{320}\) và \(\frac{17}{320}\)
b) Ta có: \(\frac{-7}{10}=\frac{\left(-7\right)x33}{10x33}=\frac{-231}{330}\) và \(\frac{1}{33}=\frac{1x10}{33x10}=\frac{10}{330}\)
c) Ta có:
\(\frac{-5}{14}=\frac{\left(-5\right)x10}{14x10}=\frac{-50}{140}\)
\(\frac{3}{20}=\frac{3x7}{20x7}=\frac{21}{140}\)
\(\frac{9}{70}=\frac{9x2}{70x2}=\frac{18}{140}\)
d) Ta có:
\(\frac{10}{42}=\frac{10x22}{42x22}=\frac{220}{924}\)
\(\frac{-3}{28}=\frac{\left(-3\right)x33}{28x33}=\frac{-99}{924}\)
\(\frac{-55}{132}=\frac{\left(-55\right)x7}{132x7}=\frac{-385}{924}\)
Bài 2
a) 4^100 = (2^2)^100= 2^200
Mà 2^202 > 2^200 => 4^100 < 2^202
b)Ta có: 31^5 <32^5 = (2^5)^5 = 2^25 (1)
17^7 > 16^7= (2^4)^7= 2^28 (2)
Từ (1) và (2) => 31^5<17^7
P = 7 + 72 + 73 + ... + 72016
=> P = 7( 1 + 7 + 72 + 73) + ... + 72013( 1 + 7 + 72 + 73)
=> P = 7( 1 + 7 + 49 + 343) + ... + 72013( 1 + 7 + 49 + 343)
=> P = 7 . 400 + ... + 72013 . 400
=> P = (7 + ... + 72013) . 400
=> P = (7 + ... + 72013) . 202 (đpcm)
\(D=\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{14}}{-\frac{10}{7}+\frac{3}{28}}\)
\(=\frac{\frac{28}{42}+\frac{12}{42}-\frac{3}{42}}{-\frac{40}{28}+\frac{3}{28}}\)
\(=\frac{\frac{37}{42}}{-\frac{37}{28}}\)
\(=\frac{\frac{1}{42}}{-\frac{1}{28}}\) (rút gọn số chia và số bị chia cho 37)
\(=\frac{-28}{42}=-\frac{2}{3}\)
Vậy \(D=-\frac{2}{3}\)
A> \(\frac{10^n-2-2}{10^n-1-2}=\frac{10^n-4}{10^n-3}=B\)
=> A>B
vì 3n^2 chia hết cho 3 nên để A chia hết cho 3 thì ta CM
n^3+2n=n*(n*n+2) vì n là số nguyên nên n có dạng 3k; 3k+1;3k+2(k thuộc Z)
nếu n=3k thì n*(n*n+2) luôn luôn chia hết cho 3
nếu n=3k+1 thì n*n=(3k+1)*(3k+1)=9k^2+3k+3k+1 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3
nếu n=3k+2 thì n*n=(3k+2)*(3k+2)=9k^2+6k+6k+4 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3
vậy biểu thức trên luôn luôn chia hết cho 3 với mọi n thuộcZ
câu b)để A chia hết cho 15 thì n^3+3n^2+2n phải chia hết cho 3;5(vì ƯCLN(3;5)=1)
Mà theo câu a thì A luôn luôn chia hết cho 3 với n thuộc Z
nên ta chỉ cần tìm giá trị của n để A chia hết cho5
để A chia hết cho 5 thì n^3 phải chia hết cho 5;3n^2 phải chia hết cho 5;2n phải chia hết cho 5
nên n phải chia hết cho 5(vì ƯCLN(3;5)=1;ƯCLN(2;5)=1 nên n^3;n^2;n phải chia hết cho 5 nên ta suy ra n phải chia hết cho 5)
mà 1<n<10 nên n=5(n là số nguyên dương)
vậy giá trị của n thỏa mãn đề bài là 5
Đáp án B
u 10 = u 1 + 9 d = − 2 + 9.3 = 25