Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: góc xOz+zOy=xOy => góc zOy=xOy-xOz=135-90=45 độ
ta thấy: góc zOy< góc tOy (45<90) => Oz nằm trong góc tOy
và: zOy=1/2 90=1/2 tOy => Oz là tia pg của góc tOy
Ta có:\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t};\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t};\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t};\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
Khi đó:\(M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)
\(=\frac{2\left(x+y+z+t\right)}{x+y+z+t}\)
\(=2\)
\(\Rightarrow M^{10}< 2^{10}=1024< 2020\)
Vậy ta có điều fải chứng minh :D
a) Ta có: góc x'Oy + góc yOz + góc zOx = 180 độ
=> góc xOz = 180 độ - (góc x'Oy + góc yOz) = 180 độ - góc x'Oz = 180 độ - 150 độ = 30 độ
Do Oz là tia phân giác của góc xOy nên :
góc xOz = góc zOy = góc xOy/2
=> góc xOy = 2. góc xOz = 2. 30 độ = 60 độ
b) Ta có: góc xOz = góc x'Oz' (đối đỉnh)
góc zOy = góc y'Oz' (đối đỉnh)
mà góc xOz = góc zOy (gt)
=> góc x'Oz' = góc y'Oz'
=> Oz' là tia phân giác của góc x'Oy'
1. x O x' y y'
Giải: a) Ta có: \(\widehat{xOy}+\widehat{yOx'}=180^0\) (kề bù)
=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-75^0=105^0\)
Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOy}=75^0\) => \(\widehat{x'Oy'}=75^0\)
\(\widehat{yOx'}=\widehat{xOy'}\) (đối đỉnh)
Mà \(\widehat{yOx'}=105^0\) => \(\widehat{xOy'}=105^0\)
1b) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)
mà \(\widehat{x'Oy}-\widehat{xOy}=30^0\)
=> \(2.\widehat{x'Oy}=210^0\)
=> \(\widehat{x'Oy}=210^0:2=105^0\) => \(\widehat{x'Oy}=\widehat{xOy'}=105^0\) (đối đỉnh)
=> \(\widehat{xOy}=180^0-105^0=75^0\) => \(\widehat{xOy}=\widehat{x'Oy'}=75^0\) (đối đỉnh)
2. O x y x' y' m m'
Giải: a) Ta có: \(\widehat{xOm}=\widehat{x'Om'}\) (đối đỉnh)
\(\widehat{mOy}=\widehat{m'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOm}=\widehat{mOy}\) (gt)
=> \(\widehat{x'Om'}=\widehat{m'Oy'}\)
Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\) (vì Om là tia p/giác)
=> \(\widehat{x'Om'}=\widehat{m'Oy'}=\frac{1}{2}.\widehat{xOy}\)
=> Om' nằm giữa Ox' và Oy'
=> Om' là tia p/giác của góc x'Oy'
b) Tự viết