Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Có 520 số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,7.
# Hok tốt !
Ta có 5 cách chọn hàng chục và bốn cách chọn hàng đơn vị nên ta có 4*5=20 số
2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)
ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0
\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1
vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)
\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1
\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0
vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)
gọi số cần tìm là abcdef (a#0 ; a;b;c;d;e;f € A ; f chẵn )
f có 3 cách chọn
a có 5 cách chọn lọc
b;c;d;e đều có 6 cách chọn
=> có 3*5*6*6*6*6 = 19440 số thỏa mãn yêu cầu bài toán
b) gọi số cần tìm là abcdef (a#0;f=0,5 ; a;b;c;d;e;f € A )
f=0,5 => f có 2 cách chọn
a có 5 cách chọn
b;c;d;e đều có 6 cách chọn
=> có 2*5*6*6*6*6 = 12960
Bài này ko xuất hiện số 0 nên tính toán nhẹ được 1 nửa
Lập được \(P_5^3=60\) số
Do vai trò của các chữ số là như nhau, nên số lần xuất hiện của mỗi chữ số ở mỗi hàng (trăm, chục, đơn vị) là như nhau. Có 60 số và 5 chữ số, vì thế, ở mỗi hàng mỗi chữ số sẽ xuất hiện \(60:5=12\) lần (ví dụ như số 2 sẽ xuất hiện ở hàng đơn vị tổng cộng 12 lần, ở hàng trăm cũng 12 lần...)
Do đó tổng giá trị các chữ số ở hàng đơn vị là:
\(12.1+12.2+12.3+12.4+12.6=12\left(1+2+3+4+6\right)=192\)
Ở hàng chục, giá trị của 1 chữ số gấp 10 lần hàng đơn vị (ví dụ số 32 thì số 2 chỉ có giá trị là 2, nhưng ở số 23 thì số 2 có giá trị là 20), do đó, tổng giá trị các chữ số ở hàng chục là:
\(10.\left(12.1+12.2+12.3+12.4+12.6\right)=10.12\left(1+2+3+4+6\right)\)
Tương tự, tổng giá trị ở hàng trăm là:
\(100.12.\left(1+2+3+4+6\right)\)
Tổng các chữ số lập được là:
\(\left(1+10+100\right).12.\left(1+2+3+4+6\right)=21312\)
Tổng quát: cho n chữ số 1,2,... (ko xuất hiện chữ số 0), lập các số tự nhiên có m<n chữ số khác nhau, vậy tổng lập được là:
\(\underbrace{11...1}_{\text{m chữ số 1}}\times\dfrac{P_n^m}{n}\times(1+2+...)\)
- Có 5 cách chọn chữ số hàng trăm.
- Có 5 cách chọn chữ số hàng chục.
- Có 4 cách chọn chữ số hàng đơn vị.
Số số được tạo thành là:
\(5.5.4=100\) (số)
Tuy nhiên trong 100 số này đã bị mất đi 1 số số chẵn:
012 | 013 | 014 | 015 |
021 | 023 | 024 | 025 |
031 | 032 | 034 | 035 |
041 | 042 | 043 | 045 |
051 | 052 | 053 | 054 |
Vậy số số lẻ hơn số số chẵn là 8 số.
Có số số chẵn là:
\(\left(100-8\right):2=46\) (số)
Có số số lẻ là :
\(100-46=54\) (số)
Nếu coi 100 số là 100 %.
Xác xuất chọn được số chẵn ở lần chọn đầu là:
\(46:100.100=46\%\)
Xác xuất chọn được số chẵn ở lần chọn thứ 2 (nếu lần ko trúng) là:
\(46:99.100\approx46,5\)
1. số tự nhiên có dạng abce ( nhớ gạch trê đầu ( vì đây là số tự nhiên))
* ta có h là :
h= mn
trong đó tập hợp mn là {0,1}
=> có 2 trường hợp xảy ra
(m,n)=(1,0) hoặc (0,1)
* ta có số tự nhiên abhe có tập hợp {h,2,3,4,5,6,7,8,9}
a có 9 cách chọn
b có 8 cách chọn
c có 7 cách chọn
e có 6 cách chọn
vậy có 9*8*7*6=3024 số
*ta phải loại trường hợp h đứng đầu và có dạng 01
trường hợp h đứng đầu và có dạng 01 có số cách chọn là :
a có 1 cách chọn là h
b có 8 cách
c có 7 cách
e có 6 cách
=> có 1*8*7*6=336 số
vậy số tự nhiên theo yêu cầu đề bài có tổng cộng
3024 - 332688 số
0 chắc
Đáp án B.
Chọn 3 chữ số trong 5 chữ số có C 5 3 = 10 cách.
Và sắp xếp 3 chữ số ở trên theo thứ tự có 3! = 6 cách.
Suy ra có 6.10 = 60 số có 3 chữ số đôi một khác nhau.
Tổng các chữ số 1, 2, 3, 4, 6 là 16 và gọi số cần tìm có dạng a b c
Khi đó, mỗi chữ số 1, 2, 3, 4, 6 sẽ xuất hiện ở 3 vị trí a,b,c tương ứng là 12 lần.
Vậy tổng của các số lập được là 12.16.(102+101+100) = 21312
Đáp án B nha :3