Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
A = (2012+2) . [ ( 2012-2) : 3+1 ] : 2 = 2014 . 671 : 2 = 675697
B = \(\frac{1}{2}\). \(\frac{2}{3}\). \(\frac{3}{4}\)+...+ \(\frac{2010}{2011}\). \(\frac{2011}{2012}\)= \(\frac{1.2.3.....2010.2011}{2.3.4.....2011.2012}\)= \(\frac{1}{2012}\)
Câu 2 :
a) \(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
=> \(\left(3y-2\right).\left(2x+1\right)=-55\)
=> \(3y-2;2x+1\in\: UC\left(-55\right)\)
=> \(3y-2;2x+1=\left\{1;-1;5;-5;11;-11;55;-55\right\}\)
- Vậy ta có bảng
\(2x+1\) | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
\(x\) | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
\(3y-2\) | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
\(3y\) | -53 | 57 | -9 | 13 | -3 | 7 | 1 | 3 |
\(y\) | \(\frac{-53}{3}\)(loại) | 19(chọn) | -3(chọn) | \(\frac{13}{3}\)(loại) | -1(chọn) | \(\frac{7}{3}\)(loại) | \(\frac{1}{3}\)(loại) | 1(chọn) |
\(\Leftrightarrow\)Những cặp (x;y) tìm được là :
(-1;19) ; (2;-3) ; (5;-1) ; (-28;1)
b) Ta đặt vế đó là A
Ta xét A : \(\frac{1}{4^2}\)< \(\frac{1}{2.4}\)
\(\frac{1}{6^2}\)< \(\frac{1}{4.6}\)
\(\frac{1}{8^2}\)< \(\frac{1}{6.8}\)
...
\(\frac{1}{\left(2n\right)^2}\)< \(\frac{1}{\left(2n-2\right).2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{2.4}\)+ \(\frac{1}{4.6}\)+...+ \(\frac{1}{\left(2n-2\right).2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{2}{2.4}\)+ \(\frac{2}{4.6}\)+...+ \(\frac{2}{\left(2n-2\right).2n}\))
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{6}\)+...+ \(\frac{1}{2n-2}\)- \(\frac{1}{2n}\))
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)- \(\frac{1}{2n}\)) = \(\frac{1}{2}\). \(\frac{1}{2}\)- \(\frac{1}{2}\). \(\frac{1}{2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{4}\)- \(\frac{1}{4n}\)< \(\frac{1}{4}\) ( Vì n \(\in\)N )
\(\Leftrightarrow\)A < \(\frac{1}{4}\)( đpcm ) .
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}\)
\(=\frac{1}{100}\)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{100}\right)\)
Đặt : \(A=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}\)
\(A=\frac{1.2.3.4.....99}{2.3.4.5.....100}\)
\(A=\frac{1}{100}\)
Vậy : \(A=\frac{1}{100}\)
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)
\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{99}+\frac{99}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{100}{2}=50\)
Vậy \(A=50\).
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}=\frac{3.4.5.....100}{2.3.4.....99}\)
\(\Leftrightarrow A=\frac{100}{2}=50\)
\(Q=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)
\(Q=\left(\frac{1}{2}\right).\left(\frac{2}{3}\right).\left(\frac{3}{4}\right)...\left(\frac{99}{100}\right)\)
\(Q=\frac{1}{100}\)
\(P=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)
\(P=\left(\frac{1.3}{1.3}+\frac{1}{1.3}\right)\left(\frac{2.4}{2.4}+\frac{1}{2.4}\right)\left(\frac{3.5}{3.5}+\frac{1}{3.5}\right)...\left(\frac{99.101}{99.101}+\frac{1}{99.101}\right)\)
\(P=\left(\frac{4}{1.3}\right)\left(\frac{9}{2.4}\right)\left(\frac{16}{3.5}\right)...\left(\frac{10000}{99.101}\right)\)
\(P=\left(\frac{2^2}{1.3}\right)\left(\frac{3^2}{2.4}\right)\left(\frac{4^2}{3.5}\right)...\left(\frac{100^2}{99.101}\right)\)
Bạn tự tách ra rồi bạn sẽ ra kết quả như ở dưới
\(P=\frac{201}{100}\)
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\cdot\cdot\left(1-\frac{1}{n^2}\right)\)
\(\Rightarrow A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\cdot\cdot\cdot\left(1-\frac{1}{n^2}\right)\)
\(\Rightarrow A=\frac{3}{4}\cdot\frac{8}{9}\cdot\cdot\cdot\frac{n^2-1}{n^2}\)
\(\Rightarrow A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\cdot\cdot\frac{\left(n-1\right)\left(n+1\right)}{n\cdot n}\)
\(\Rightarrow A=\frac{\left(1\cdot3\right)\cdot\left(2\cdot4\right)\cdot\cdot\cdot\left[\left(n-1\right)\left(n+1\right)\right]}{\left(2\cdot2\right)\cdot\left(3\cdot3\right)\cdot\cdot\cdot\left(n\cdot n\right)}\)
\(\Rightarrow A=\frac{\left[1\cdot2\cdot\cdot\cdot\cdot\cdot\left(n-1\right)\right]\cdot\left[3\cdot4\cdot\cdot\cdot\cdot\cdot\left(n+1\right)\right]}{\left(2\cdot3\cdot\cdot\cdot\cdot\cdot n\right)\cdot\left(2\cdot3\cdot\cdot\cdot\cdot\cdot n\right)}\)
\(\Rightarrow A=\frac{1\cdot\left(n+1\right)}{n\cdot2}\)
\(\Rightarrow A=\frac{n+1}{2n}\)
A=(1-1/2^2)(1-1/3^2).....(1-1/n^2)
A=1(1/2^2-1/3^2-...-1/n^2)
......
xin lỗi bạn nha mình phải tắt máy rồi bạn cố gắng suy nghĩ tiếp nha
\(\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right)\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\)
\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\left(1-1\right)\)
\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{3}{7}\right).0\)
\(=0\)
Trong dãy nhất định có \(\left[1-\frac{7}{7}\right]=0\)nên tích dãy trên là 0