K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

\(B=\frac{18}{37}-\frac{8}{2017}+\frac{19}{37}-1\frac{2009}{2017}+\frac{2017}{2018}\)

\(B=\left(\frac{18}{37}+\frac{19}{37}\right)-\left(\frac{8}{2017}+1\frac{2009}{2017}\right)+\frac{2017}{2018}\)

\(B=1-\left(\frac{8}{2017}+\frac{4026}{2017}\right)+\frac{2017}{2018}\)

\(B=1-2+\frac{2017}{2018}\)

\(B=-1+\frac{2017}{2018}=\frac{-2018}{2018}+\frac{2017}{2018}\)

\(B=\frac{-1}{2018}\)

CHÚC BN HỌC  TỐT!!!!!!

mk nha!!

5 tháng 4 2018

bài 1.a)\(A=\frac{9^3.25^3}{18^2.125^2}=\frac{3^6.5^6}{2^2.3^4.5^6}=\frac{9}{4}\)

b) \(B=\frac{18}{37}+\frac{19}{37}+\frac{8}{2017}-\frac{4026}{2017}+\frac{2017}{2018}\)

\(=1-\frac{4014}{2017}+\frac{2017}{2018}=\frac{1997}{2017}+\frac{2017}{2018}\)

8 tháng 8 2017

\(\frac{19}{37}+\left(1-\frac{19}{37}\right)\)

\(=\frac{19}{37}+1-\frac{19}{37}\)
\(=\left(\frac{19}{37}-\frac{19}{37}\right)+1\)

\(=0+1=1\)

5 tháng 4 2017

C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)

c=\(\frac{1}{1}-\frac{1}{10}\)

c=\(\frac{9}{10}\)

còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!

18 tháng 8 2019

a) \(A=\frac{2+2^2+...+2^{2017}}{1-2^{2017}}\)

Đặt \(B=2+2^2+...+2^{2017}\)

\(\Rightarrow2B=2^2+2^3+...+2^{2018}\)

\(\Rightarrow2B-B=\left(2^2+2^3+...+2^{2018}\right)-\left(2+...+2^{2017}\right)\)

\(\Rightarrow B=2^{2018}-2\)

\(\Rightarrow A=\frac{2^{2018}-2}{1-2^{2017}}\)

\(\Rightarrow A=\frac{-2.\left(1-2^{2017}\right)}{1-2^{2017}}\)

\(\Rightarrow A=-2\)

18 tháng 8 2019

b)Đề phải là CM: \(A< \frac{2017}{2016^2}\)

 \(A=\frac{1}{2017}+\frac{2}{2017^2}+...+\frac{22017}{2017^{2017}}+\frac{2018}{2017^{2018}}\)

\(\Rightarrow2017A=1+\frac{2}{2017}+...+\frac{22017}{2017^{2016}}+\frac{2018}{2017^{2017}}\)

\(\Rightarrow2017A-A=\left(1+...+\frac{2018}{2017^{2017}}\right)-\left(\frac{1}{2017}+...+\frac{2017}{2017^{2017}}+\frac{2018}{2017^{2018}}\right)\)

\(\Rightarrow2016A=1+\frac{1}{2017}+\frac{1}{2017^2}+...+\frac{1}{2017^{2017}}-\frac{2018}{2017^{2018}}\)

Đặt \(\Rightarrow S=1+\frac{1}{2017}+\frac{1}{2017^2}+...+\frac{1}{2017^{2017}}\)

\(\Rightarrow2017S=2017+1+\frac{1}{2017}+...+\frac{1}{2017^{2016}}\)

\(\Rightarrow2017S-S=\left(2017+1+...+\frac{1}{2017^{2016}}\right)-\left(1+...+\frac{1}{2017^{2017}}\right)\)

\(\Rightarrow2016S=2017-\frac{1}{2017^{2017}}< 2017\)

\(\Rightarrow2016S< 2017\)

\(\Rightarrow S< \frac{2017}{2016}\)

\(\Rightarrow2016A< \frac{2017}{2016}\)

\(\Rightarrow A< \frac{2017}{2016^2}\left(đpcm\right)\)

14 tháng 4 2019

1. \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)>1

2. A>B

14 tháng 6 2018

Ta có : 

\(\frac{1}{2009}A=\frac{2009^{2017}+1}{2009^{2017}+2009}=\frac{2009^{2017}+2009}{2009^{2017}+2009}-\frac{2008}{2009^{2017}+2009}=1-\frac{2008}{2009^{2017}+2009}< 1\)

\(\frac{1}{2009}B=\frac{2009^{2018}-2}{2009^{2018}-4018}=\frac{2009^{2018}-4018}{2009^{2018}-4018}+\frac{4016}{2009^{2018}-4018}=1+\frac{4016}{2009^{2018}-4018}>1\)

\(\Rightarrow\)\(A< 1< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

14 tháng 6 2018

Vi 2009^2017 + 1 / 2009^2016 + 1 > 1

nen 2009^2018 + 1 / 2009^2016 + 1 < 2009^2018 + 1 - 3 / 2009^2016 + 1 - 3 = 2009^2018 - 2 / 2009^2017 - 2

Vay ...

Xem trong vo bai tap co may bai tuong tu de on tap do ban

23 tháng 4 2017

Ta có: \(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)

\(=1+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)\)

\(=\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2018}\)

\(=2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)

Giờ ta thế vào bài toán ban đầu được

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)

\(=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}\)

\(=\frac{2017}{2018}\)  

16 tháng 4 2017

Vì A < 1

\(\Rightarrow A< \frac{2017^{2018}+1+2016}{2017^{2019}+1+2016}=\frac{2017^{2018}+2017}{2017^{2019}+2017}=\frac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2018}+1\right)}=\frac{2017^{2017}+1}{2017^{2018}+1}=B\)

Vậy A < B