Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{19}{37}+\left(1-\frac{19}{37}\right)\)
\(=\frac{19}{37}+1-\frac{19}{37}\)
\(=\left(\frac{19}{37}-\frac{19}{37}\right)+1\)
\(=0+1=1\)
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
a) \(A=\frac{2+2^2+...+2^{2017}}{1-2^{2017}}\)
Đặt \(B=2+2^2+...+2^{2017}\)
\(\Rightarrow2B=2^2+2^3+...+2^{2018}\)
\(\Rightarrow2B-B=\left(2^2+2^3+...+2^{2018}\right)-\left(2+...+2^{2017}\right)\)
\(\Rightarrow B=2^{2018}-2\)
\(\Rightarrow A=\frac{2^{2018}-2}{1-2^{2017}}\)
\(\Rightarrow A=\frac{-2.\left(1-2^{2017}\right)}{1-2^{2017}}\)
\(\Rightarrow A=-2\)
b)Đề phải là CM: \(A< \frac{2017}{2016^2}\)
\(A=\frac{1}{2017}+\frac{2}{2017^2}+...+\frac{22017}{2017^{2017}}+\frac{2018}{2017^{2018}}\)
\(\Rightarrow2017A=1+\frac{2}{2017}+...+\frac{22017}{2017^{2016}}+\frac{2018}{2017^{2017}}\)
\(\Rightarrow2017A-A=\left(1+...+\frac{2018}{2017^{2017}}\right)-\left(\frac{1}{2017}+...+\frac{2017}{2017^{2017}}+\frac{2018}{2017^{2018}}\right)\)
\(\Rightarrow2016A=1+\frac{1}{2017}+\frac{1}{2017^2}+...+\frac{1}{2017^{2017}}-\frac{2018}{2017^{2018}}\)
Đặt \(\Rightarrow S=1+\frac{1}{2017}+\frac{1}{2017^2}+...+\frac{1}{2017^{2017}}\)
\(\Rightarrow2017S=2017+1+\frac{1}{2017}+...+\frac{1}{2017^{2016}}\)
\(\Rightarrow2017S-S=\left(2017+1+...+\frac{1}{2017^{2016}}\right)-\left(1+...+\frac{1}{2017^{2017}}\right)\)
\(\Rightarrow2016S=2017-\frac{1}{2017^{2017}}< 2017\)
\(\Rightarrow2016S< 2017\)
\(\Rightarrow S< \frac{2017}{2016}\)
\(\Rightarrow2016A< \frac{2017}{2016}\)
\(\Rightarrow A< \frac{2017}{2016^2}\left(đpcm\right)\)
Ta có :
\(\frac{1}{2009}A=\frac{2009^{2017}+1}{2009^{2017}+2009}=\frac{2009^{2017}+2009}{2009^{2017}+2009}-\frac{2008}{2009^{2017}+2009}=1-\frac{2008}{2009^{2017}+2009}< 1\)
\(\frac{1}{2009}B=\frac{2009^{2018}-2}{2009^{2018}-4018}=\frac{2009^{2018}-4018}{2009^{2018}-4018}+\frac{4016}{2009^{2018}-4018}=1+\frac{4016}{2009^{2018}-4018}>1\)
\(\Rightarrow\)\(A< 1< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Ta có: \(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)
\(=1+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)\)
\(=\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2018}\)
\(=2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)
Giờ ta thế vào bài toán ban đầu được
\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)
\(=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}\)
\(=\frac{2017}{2018}\)
\(B=\frac{18}{37}-\frac{8}{2017}+\frac{19}{37}-1\frac{2009}{2017}+\frac{2017}{2018}\)
\(B=\left(\frac{18}{37}+\frac{19}{37}\right)-\left(\frac{8}{2017}+1\frac{2009}{2017}\right)+\frac{2017}{2018}\)
\(B=1-\left(\frac{8}{2017}+\frac{4026}{2017}\right)+\frac{2017}{2018}\)
\(B=1-2+\frac{2017}{2018}\)
\(B=-1+\frac{2017}{2018}=\frac{-2018}{2018}+\frac{2017}{2018}\)
\(B=\frac{-1}{2018}\)
CHÚC BN HỌC TỐT!!!!!!
mk nha!!