Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ nên sửa đề y=2(m-1)x-m2+6 và parobol (P)y=x2
a) Với m=3 ta được (d): y=4x-3
Hoành độ giao điểm của đường thẳng (d) và parabol (P0 là nghiệm của phương trình \(x^2=4x-3\)
<=> x2-4x+3=0
<=> x2-3x-x+3=0
<=> x(x-3)-(x-3)=0
<=> (x-3)(x-1)=0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}}\)
Vậy giao điểm của (d) và (P) là A(1;1); B(3;9)
b) Phương trình hoành độ của (d) cắt (P) là nghiệm của phương trình x2-2(m-1)x-m2+6
<=> x2-2(m-1)x+m2-6=0 (1)
<=> (m-1)2-(m2-6)=7-2m
Đường thẳng (d) cắt (P) tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có 1 nghiệm phân biệt
<=> 7-2m>0
<=> \(m< \frac{7}{2}\)(*)
Gọi x1;x2 là nghiệm của phương trình (1)
Khi đó thoe định lý Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1\cdot x_2+m^2=6\end{cases}}\)
Theo bài ra ta có: \(x_1^2+x_2^2=6\Leftrightarrow x_1+x_2^2+2x_1x_2=16\)
\(4\left(m^2-1\right)-2\left(m^2-6\right)=16\)
<=>2m2-8m=0
<=> m=0 hoặc m=4
m=0 (tmđk (*))
m=4 (ktmđk (*))
Vậy m=0 là giá trị cần tìm
a) Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình: \(x^2-2\left(m+1\right)x+2m=0\)
\(\Delta'=\left(m+1\right)^2-2m=m^2+1>0,\forall m\) (vì \(m^2\ge0\))
=> (P) và (d) cắt nhau tại 2 điểm phân biệt với mọi m
b) Theo định lí Vi-ét: \(S=x_1+x_2=2\left(m+1\right)=2m+2\)
\(x_1^2-x_2^2=x_1-x_2\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=x_1-x_2\)
\(\Leftrightarrow x_1+x_2=1\Leftrightarrow2m+2=1\Leftrightarrow m=-\frac{1}{2}\)
Vậy \(m=-\frac{1}{2}\) thỏa mãn đề bài
Lời giải:
a.
PT hoành độ giao điểm của $(P)$ và $(d)$ là:
$x^2=3x+m^2-1$
$\Leftrightarrow x^2-3x-(m^2-1)=0(*)$
Ta thấy:
$\Delta=9+4(m^2-1)=4m^2+5>0$ với mọi $m$
$\Rightarrow$ PT $(*)$ luôn có 2 nghiệm pb với mọi $m\in\mathbb{R}$
$\Rightarrow (P), (d)$ luôn cắt nhau tại 2 điểm pb với mọi $m\in\mathbb{R}$
b.
$x_1,x_2$ là hoành độ giao điểm của $(P), (d)$, tức là $x_1,x_2$ là nghiệm của $(*)$
Áp dụng định lý Viet:
$x_1+x_2=3$
$x_1x_2=1-m^2$
Khi đó:
$(x_1+1)(x_2+1)=1$
$\Leftrightarrow x_1x_2+(x_1+x_2)+1=1$
$\Leftrightarrow 1-m^2+3+1=1$
$\Leftrightarrow m^2=4\Leftrightarrow m=\pm 2$ (tm)