Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự vẽ ( ảnh thật )
b. Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)
\(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}\) ( do OI = AB ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'-OF'}\)
\(\Leftrightarrow\dfrac{6}{OA'}=\dfrac{4}{OA'-4}\)
\(\Leftrightarrow OA'=12\left(cm\right)\)
Thế \(OA'=12\) vào \(\left(1\right)\Leftrightarrow\dfrac{6}{12}=\dfrac{0,5}{A'B'}\)
\(\Leftrightarrow A'B'=1\left(cm\right)\)
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{4}=\dfrac{1}{8}+\dfrac{1}{d'}\Rightarrow d'=8cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{h}{h'}=\dfrac{8}{8}=1\Rightarrow h=h'\)
đặc điểm ảnh: vì d > f nên thấu kính hội tụ này cho ảnh thật
ảnh này hứng được trên màn, ngược chiều và lớn hơn vật
△OAB ∼ △OA'B' (g-g) \(=>\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=>\dfrac{d}{d'}=\dfrac{h}{h'}\left(1\right)\)
△FOI ∼ △FA'B' (g-g) \(=>\dfrac{OF}{FA'}=\dfrac{OI}{A'B'}\)
mà FA' = OA' - OF; OI = AB
\(=>\dfrac{OF}{OA'-OF}=\dfrac{AB}{A'B'}=>\dfrac{f}{d'-f}=\dfrac{h}{h'}\left(2\right)\)
từ (1)(2) \(=>\dfrac{d}{d'}=\dfrac{f}{d'-f}=>dd'-df=d'f\)
\(=>dd'-d'f=df\Rightarrow d'\cdot\left(d-f\right)=df\)
\(=>d'=\dfrac{df}{d-f}=\dfrac{6\cdot4}{6-4}=12\left(cm\right)\left(3\right)\)
thay (3) vào (1) ta được: \(\dfrac{6}{12}=\dfrac{1}{h'}\)
\(=>h'=12\cdot1:6=2\left(cm\right)\)
vậy chiều cao ảnh là 2cm; khoảng cách từ ảnh đến thấu kính là 12cm
Ảnh thật, ngược chiều và lớn hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{4}=\dfrac{1}{6}+\dfrac{1}{d'}\)
\(\Rightarrow d'=12cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{1}{h'}=\dfrac{6}{12}\Rightarrow h'=2cm\)
A B O F F' A' B'
b) ảnh A'B' là ảnh ảo ngược chiều và nhỏ hơn vật
c) ΔOAB∞ΔOA'B'
⇒\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{1}{A'B'}=\dfrac{5}{OA'}\) 1
ΔOFI∞ΔFA'B'
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{F'A'}\Rightarrow\dfrac{AB}{A'B'}\dfrac{OF}{OF-OA}\)
\(\Leftrightarrow\dfrac{1}{A'B'}=\dfrac{3}{3-OA'}\) 2
Từ 1 và 2 ⇒ \(\dfrac{1}{OA'}=\dfrac{3}{3-OA'}\)
⇔1(3-OA') = 3. OA'
⇔3- 3.OA' = 3.OA'
⇔-3.OA' -3. OA' = -3
⇔-6.OA' = -3
⇔OA' = -9
Thay OA'= -9 vào 1
⇒\(\dfrac{1}{A'B'}=\dfrac{5}{-9}\Rightarrow A'B'=\dfrac{1.\left(-9\right)}{5}=-1.8\)