\(A=\left(1-\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

\(A=1-\left(\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)

\(=1-\dfrac{2\left(4x-1\right)-\left(1-2\sqrt{x}\right)-5\sqrt{x}\cdot\left(1+2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)-\left(1-2\sqrt{x}\right)\cdot\left(4x-1\right)}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)

\(=1-\dfrac{4x-4x\sqrt{x}-1+\sqrt{x}}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)

\(=1-\dfrac{4x\cdot\left(1-\sqrt{x}\right)-\left(1-\sqrt{x}\right)}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)

\(=1-\dfrac{\left(4x-1\right)\cdot\left(1-\sqrt{x}\right)}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)

\(=1-\dfrac{1-\sqrt{x}}{\left(1+2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)

\(=1-\dfrac{-\left(\sqrt{x}-1\right)}{\left(1+2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)

\(=1-\dfrac{-1}{\left(1-2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\left(4x+4\sqrt{x}+1\right)\)

\(=1+\dfrac{1}{1-4x}\cdot\left(4x+4\sqrt{x}+1\right)\)

\(=1+\dfrac{4x+4\sqrt{x}+1}{1-4x}\)

\(=\dfrac{1-4x+4x+4\sqrt{x}+1}{1-4x}\)

\(=\dfrac{2+4\sqrt{x}}{1-4x}\)

21 tháng 6 2017

kết quả chưa tối giản thế này mới đúng

\(\dfrac{2}{1-2\sqrt{x}}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

a)

Đặt

\(\sqrt{1+x}=a; \sqrt{1-x}=b\Rightarrow \left\{\begin{matrix} ab=\sqrt{(1+x)(1-x)}=\sqrt{1-x^2}\\ a\geq b\\ a^2+b^2=2\end{matrix}\right.\)

Khi đó:

\(A=\frac{\sqrt{1-\sqrt{1-x^2}}(\sqrt{(1+x)^3}+\sqrt{(1-x)^3})}{2-\sqrt{1-x^2}}\)

\(=\frac{\sqrt{\frac{a^2+b^2}{2}-ab}(a^3+b^3)}{a^2+b^2-ab}=\frac{\sqrt{\frac{a^2+b^2-2ab}{2}}(a+b)(a^2-ab+b^2)}{a^2+b^2-ab}\)

\(=\sqrt{\frac{a^2-2ab+b^2}{2}}(a+b)=\sqrt{\frac{(a-b)^2}{2}}(a+b)=\frac{1}{\sqrt{2}}|a-b|(a+b)\)

\(=\frac{1}{\sqrt{2}}(a-b)(a+b)=\frac{1}{\sqrt{2}}(a^2-b^2)=\frac{1}{\sqrt{2}}[(1+x)-(1-x)]=\sqrt{2}x\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

Sửa đề: \(\frac{25}{(x+z)^2}=\frac{16}{(z-y)(2x+y+z)}\)

Ta có:

Áp dụng tính chất dãy tỉ số bằng nhau thì:

\(k=\frac{a}{x+y}=\frac{5}{x+z}=\frac{a+5}{2x+y+z}=\frac{5-a}{z-y}\) ($k$ là một số biểu thị giá trị chung)

Khi đó:

\(\frac{16}{(z-y)(2x+y+z)}=\frac{25}{(x+z)^2}=(\frac{5}{x+z})^2=k^2\)

Mà: \(k^2=\frac{a+5}{2x+y+z}.\frac{5-a}{z-y}=\frac{25-a^2}{(2x+y+z)(z-y)}\)

Do đó: \(\frac{16}{(z-y)(2x+y+z)}=\frac{25-a^2}{(2x+y+z)(z-y)}\Rightarrow 16=25-a^2\)

\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)

Suy ra:
\(Q=\frac{a^6-2a^5+a-2}{a^5+1}=\frac{a^5(a-2)+(a-2)}{a^5+1}=\frac{(a-2)(a^5+1)}{a^5+1}=a-2=\left[\begin{matrix} 1\\ -5\end{matrix}\right.\)

a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)

\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)

\(=\dfrac{1}{x-\sqrt{3}}\)

b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)

\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)

\(=x-2\sqrt{x}+1\)

c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)

28 tháng 6 2017

đề sai rồi bạn sửa lại đi rồi mình giúp

28 tháng 6 2017

sai ở đâu v bn

 

a: \(B=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b: Để |B|=B thì B>=0

=>\(\sqrt{x}-2>=0\)

hay x>4

31 tháng 5 2017

ĐKXĐ: \(x\ge0,x\ne1\)

\(A=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)

= \(\dfrac{x+\sqrt{x}+1}{x+1}:\left(\dfrac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)-1\)

= \(\dfrac{\left(x+\sqrt{x}+1\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)

= \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}-1\)

= \(\dfrac{x+\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}\)

= \(\dfrac{x+2}{\sqrt{x}-1}\)

\(A=\dfrac{\sqrt{x}+2+x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}:\dfrac{x-1-x+\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)

\(=\dfrac{x+3}{\sqrt{x}+3}\)

1 tháng 8 2017

a. \(\Rightarrow B=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{x+1-x+1}{x-1}\)

\(\Rightarrow B=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(1-x\right)}.\dfrac{x-1}{2}\)

\(\Rightarrow B=\dfrac{x+\sqrt{x}+2\sqrt{x}+2-x+\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(1-x\right)}.\dfrac{-\left(1-x\right)}{2}\)

\(\Rightarrow B=\dfrac{-6\sqrt{x}}{2\left(\sqrt{x}-1\right)}=\dfrac{-3\sqrt{x}}{\sqrt{x}-1}\) (1)

b. Ta có: \(\left|2\sqrt{x}-1\right|=3\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x}-1=3\\2\sqrt{x}-1=-3\end{matrix}\right.\Leftrightarrow x=4\)

Thay x=4 vào (1), ta có:\(\dfrac{-3.\sqrt{4}}{\sqrt{4}-1}=-6\)

Vậy gtbt B với \(\left|2\sqrt{x}-1\right|=3\) là -6

2 tháng 8 2017

gtbt là j v bn?