Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}\)
\(\Leftrightarrow a^3b^3\left(a^2-ab+b^2\right)\left(a+b\right)\le\frac{\left(a+b\right)^9}{256}\)
\(\Leftrightarrow a^3b^3\left(a+b\right)^3\left(a^3+b^3\right)\le\frac{\left(a+b\right)^{12}}{256}\)
\(VT=ab\left(a+b\right).ab\left(a+b\right).ab\left(a+b\right).\left(a^3+b^3\right)\)
\(\le\left(\frac{ab\left(a+b\right)+ab\left(a+b\right)+ab\left(a+b\right)+\left(a^3+b^3\right)}{4}\right)^4\)
\(\le\frac{\left(a^3+3a^2b+3ab^2+b^3\right)^4}{256}\)
\(\le\frac{\left(a+b\right)^{12}}{256}\left(đpcm\right).\)
\(2.\) \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\ge\frac{b}{1+b}+\frac{c}{1+c}\)
\(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
\(\Rightarrow\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2.\left(1+b\right)^2.\left(1+c\right)^2}}\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow\) \(1\ge8abc\)
\(\Leftrightarrow\) \(abc\ge\frac{1}{8}\left(đpcm\right).\)
Lời giải:
Từ $abc=1$ suy ra tồn tại $x,y,z>0$ sao cho \((a,b,c)=\left(\frac{x}{y},\frac{y}{z},\frac{z}{x}\right)\)
Bài toán chuyển về CMR:
\(A=\sqrt{\frac{yz}{xy+xz+2yz}}+\sqrt{\frac{xz}{xy+yz+2xz}}+\sqrt{\frac{xy}{2xy+yz+xz}}\leq \frac{3}{4}\)
Áp dụng BĐT AM-GM: \(\sqrt{\frac{yz}{xy+xz+2yz}}\leq \frac{yz}{xy+xz+2yz}+\frac{1}{4}\)
Thiết lập tương tự... \(\Rightarrow A\leq \frac{xy}{2xy+yz+xz}+\frac{yz}{xy+2yz+xz}+\frac{xz}{xy+yz+2xz}+\frac{3}{4}\) $(1)$
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{xy}\geq \frac{16}{2xy+yz+xz}\Rightarrow \frac{9xy}{xy+yz+xz}+1\geq \frac{16xy}{2xy+yz+xz}\)
Thiết lập tương tự với các phân thức còn lại và công theo vế:
\(\Rightarrow \frac{xy}{2xy+yz+xz}+\frac{yz}{xy+2yz+xz}+\frac{xz}{xy+yz+2xz}\leq \frac{12}{16}=\frac{3}{4}\) $(2)$
Từ \((1),(2)\Rightarrow A\leq \frac{3}{2} (\text{đpcm})\).
Dấu $=$ xảy ra khi $x=y=z$ hay $a=b=c=1$
\(P=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(=\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\left(1\right)\)
Áp dụng BĐT AM-GM ta có: :
\(\frac{a}{a^2+b^2+c^2}+9a\left(a^2+b^2+c^2\right)\ge2\sqrt{9a^2}=6a\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{a^2+b^2+c^2}+9b\left(a^2+b^2+c^2\right)\ge6b;\frac{c}{a^2+b^2+c^2}+9c\left(a^2+b^2+c^2\right)\ge6c\)
\(\Rightarrow\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}+9\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge6\left(a+b+c\right)\)
Theo BĐT Cauchy-Schwarz thì:
\(9\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge9\cdot\frac{\left(a+b+c\right)^2}{3}\cdot\left(a+b+c\right)=3\)
\(\Rightarrow\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}\ge6-3=3\)
Và \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\ge\frac{9}{\frac{\left(a+b+c\right)^2}{3}}=27\)
Khi đó nhìn vào \(\left(1\right)\) thấy \(P\ge27+3=30\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
nhầm lẫn 1 số chỗ nên giờ mới ra,mong bn thông cảm
ta có:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}=1\)
đặt \(P=\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)
áp dụng bunhia ta có:
\(P\left(a+b+c\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2=1\)
\(\Rightarrow P\ge\frac{1}{a+b+c}\)
a)Áp dụng BĐT AM-GM ta có
\(\frac{ab\sqrt{ab}}{a+b}\le\frac{ab\sqrt{ab}}{2\sqrt{ab}}=\frac{ab}{2}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{bc\sqrt{bc}}{b+c}\le\frac{bc}{2};\frac{ac\sqrt{ac}}{a+c}\le\frac{ac}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=Σ\frac{ab\sqrt{ab}}{a+b}\le\frac{ab+bc+ca}{2}=VP\)
Khi \(a=b=c\)
b)Áp dụng tiếp AM-GM:
\(b\sqrt{a-1}\le\frac{b\left(a-1+1\right)}{2}=\frac{ab}{2}\)
\(a\sqrt{b-1}\le\frac{a\left(b-1+1\right)}{2}=\frac{ab}{2}\)
Cộng theo vế 2 BĐT trên ta có:
\(VT=b\sqrt{a-1}+a\sqrt{b-1}\le ab=VP\)
Khi \(a=b=1\)
sử dụng bất đẳng thức côsi cho từng 2 phân số
sau đó cộng lại là ra
hok tốt nha bn
Áp dụng bất đẳng thức Cô-si ta có
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab^2c}{ac}}=2b\)
\(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{abc^2}{ab}}=2c\)
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{a^2bc}{bc}}=2a\)
Cộng từng vế của 3 bất đẳng thức trên lại ta được
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
Dấu "=" xảy ra <=> a = b = c
Áp dụng bất đẳng thức Cô si cho ba số dương ta có \(a+b+c\ge3\sqrt[3]{abc}\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\). Do đó nếu đặt \(t=\sqrt[3]{abc}\) t hì \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(t+\frac{1}{t}\right)\) . Chú ý rằng từ giả thiết
\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=1\) suy ra \(a^2+b^2+c^2=abc\) từ đó
\(abc=a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow a^3b^3c^3\ge27a^2b^2c^2\Rightarrow abc\ge27\)\(\Rightarrow t\ge3\).
Do đó \(t+\frac{1}{t}=\frac{8t}{9}+\frac{t}{9}+\frac{1}{t}\ge\frac{8.3}{9}+2\sqrt{\frac{t}{9}.\frac{1}{t}}=\frac{10}{3}\). Suy ra
\(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(t+\frac{1}{t}\right)\ge\frac{3.10}{3}=10\)
Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b=c>0\\t=\sqrt[3]{abc}=3\\a^2+b^2+c^2=abc\end{cases}}\)\(\Leftrightarrow a=b=c=3\).
\(VT=\frac{c+ab}{a+b}+\frac{b+ac}{a+c}+\frac{a+bc}{b+c}\)
\(=\frac{c\left(a+b+c\right)+ab}{a+b}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{a\left(a+b+c\right)+bc}{b+c}\)
\(=\frac{ac+bc+c^2+ab}{a+b}+\frac{ab+b^2+cb+ac}{a+c}+\frac{a^2+ab+ac+bc}{b+c}\)
\(=\frac{\left(c+a\right)\left(c+b\right)}{a+b}+\frac{\left(b+c\right)\left(a+b\right)}{a+c}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}\)
lm nhuthe thi no lon hon = 2 alk