Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=\(\frac{101+100+...+3+2+1}{101-100+...+3-2+1}\)
=\(\frac{\left(101+1\right).101:2}{\left(101-100\right)+...+\left(3-2\right)+1}\) (nhóm 2 số hạng ở MS thì sẽ có 51 nhóm và dư 1 số hang )
=\(\frac{102.101:2}{1+...+1+1}\) ( Ms có 51 số 1)
=\(\frac{51.101}{51}\)=101
D=\(\frac{3737.43-4343.37}{2+4+6+...+100}\)
= \(\frac{37.101.43-43.101.37}{2+4+6+..+100}\)
= \(\frac{0}{2+4+6+...+100}\)
=0
Tick mik nha, thks bạn
Bài 1:
\(\frac{37.13-13}{24+37.12}=\frac{13.\left(37-1\right)}{2.12+37.12}=\frac{13.36}{12.\left(37+2\right)}=\frac{13.36}{12.39}=\frac{1.3}{1.3}=1\)
Bài 2:
\(\frac{101+100+...+2+1}{101-100+99-98+...+3-2+1}=\frac{\left[\left(101-1\right):1+1\right].\left(101+1\right):2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)\(=\frac{101.102:2}{1.\left[\left(101-1\right):2+1\right]}=\frac{5151}{1.51}=\frac{5151}{51}=101\)
\(\frac{3737.43-4343.37}{2+4+...+100}=\frac{37.101.43-43.101.37}{2+4+...+100}=\frac{0}{2+4+6+...+100}=0\)
b, \(3737.43-4343.37=\left(37.101\right).43-\left(43.101\right).37=0\)
suy ra B = 0
c, \(D=\frac{2^{12}\left(13+65\right)}{2^{10}.104}+\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{2^{12}.78}{2^{10}.104}+\frac{3^{10}.16}{3^9.2^4}\)
\(=\frac{2^{12}.2.39}{2^{10}.2^3.13}+\frac{3^{10}.2^4}{3^9.2^4}=\frac{39}{13}+3=6\)
Gọi \(101+100+99+98+...+3+2+1\) là \(A\)
Gọi \(101-100+99-98+...+3-2+1\) là \(B\)
Ta có:
\(A=1+2+3+...+98+99+100+101\\ =\dfrac{101\cdot\left(101+1\right)}{2}\\ =\dfrac{101\cdot102}{2}\\ =5151\)
\(B=101-100+99-98+...+3-2+1\\ =\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1\\ =1+1+...+1+1\)
\(A=\dfrac{101\cdot\dfrac{102}{2}}{\left(101-100\right)+99-98+...+3-2+1}\)
\(=\dfrac{101\cdot51}{1+1+...+1}=\dfrac{101\cdot51}{51}=101\)
\(B=\dfrac{37\cdot43\left(101-101\right)}{2+4+...+100}=0\)
a, \(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
Ta có: \(T=101+100+99+98+...+3+2+1\) \(=\dfrac{\left(101+1\right).101}{2}\)
\(=\dfrac{102.101}{2}\Leftrightarrow51.101\)
\(M=101-100+99-98+...+3-2+1\)
Ta có: \(101:2=50\) (dư \(1\))
\(\Rightarrow M=\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1\)
Có \(50\) dấu ngoặc tròn "\(\left(\right)\)"
\(\Rightarrow M=1+1+...+1+1=51.1=51\)
\(M\) có \(51\) số \(1\)
\(\Rightarrow A=\dfrac{T}{M}=\dfrac{51.101}{51}=101\)
Vậy \(A=101\)
b, \(B=\dfrac{3737.43-4343.37}{2+4+6+...100}\)
Ta có: \(T=3737.43-4343.37\)
\(T=37.101.43-43.101.37\)
\(T=0\)
\(\Rightarrow\) \(B=\dfrac{T}{2+4+6+...+100}=\dfrac{0}{2+4+6+...+100}\) \(=0\)
Vậy \(B=0\)