Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(e,\frac{22}{15}-x=-\frac{8}{27}\)
=> \(x=\frac{22}{15}-\left[-\frac{8}{27}\right]\)
=> \(x=\frac{22}{15}+\frac{8}{27}\)
=> \(x=\frac{198}{135}+\frac{40}{135}=\frac{198+40}{135}=\frac{238}{135}\)
\(g,\left[\frac{2x}{5}-1\right]:\left[-5\right]=\frac{1}{4}\)
=> \(\left[\frac{2x}{5}-\frac{1}{1}\right]=\frac{1}{4}\cdot\left[-5\right]\)
=> \(\left[\frac{2x}{5}-\frac{5}{5}\right]=-\frac{5}{4}\)
=> \(\frac{2x-5}{5}=-\frac{5}{4}\)
=> \(2x-5=-\frac{5}{4}\cdot5=-\frac{25}{4}\)
=> \(2x=-\frac{5}{4}\)
=> \(x=-\frac{5}{8}\)
\(h,-2\frac{1}{4}x+9\frac{1}{4}=20\)
=> \(-\frac{9}{4}x+\frac{37}{4}=20\)
=> \(-\frac{9}{4}x=20-\frac{37}{4}=\frac{43}{4}\)
=> \(x=\frac{43}{4}:\left[-\frac{9}{4}\right]=\frac{43}{4}\cdot\left[-\frac{4}{9}\right]=\frac{43}{1}\cdot\left[-\frac{1}{9}\right]=-\frac{43}{9}\)
\(i,-4\frac{3}{5}\cdot2\frac{4}{23}\le x\le-2\frac{3}{5}:1\frac{6}{15}\)
=> \(-\frac{23}{5}\cdot\frac{50}{23}\le x\le-\frac{13}{5}:\frac{21}{15}\)
=> \(-\frac{1}{1}\cdot\frac{10}{1}\le x\le-\frac{13}{5}\cdot\frac{15}{21}\)
=> \(-10\le x\le-\frac{13}{1}\cdot\frac{3}{21}\)
=> \(-10\le x\le-\frac{13}{1}\cdot\frac{1}{7}\)
=> \(-10\le x\le-\frac{13}{7}\)
Đến đây tìm x
Câu 1:
a)\(\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(-\frac{9}{2}\right)\right]-\frac{5}{6}\)
\(=\frac{3}{4}-\frac{1}{4}-\frac{14}{6}+\frac{27}{6}-\frac{5}{6}\)
\(=\frac{1}{2}-\frac{4}{3}\)
\(=-\frac{5}{6}\)
b)\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)
\(=7+\frac{1}{12}+3-\frac{1}{12}-5\)
\(=5\)
Câu 2:
\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
\(-\frac{1}{12}\le\frac{x}{12}< 1-\frac{5}{12}\)
\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)
Vậy -1\(\le\)x<7
a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}+\dfrac{5}{48}=\dfrac{6}{48}=\dfrac{1}{8}\)
\(\Leftrightarrow-\dfrac{1}{12}< x< \dfrac{1}{8}\)
=>x=0
c: \(\Leftrightarrow x=\dfrac{-1}{2}\cdot\dfrac{1}{4}=\dfrac{-1}{8}\)
d: \(\Leftrightarrow x^8=x^7\)
=>x(x-1)=0
=>x=0(loại) hoặc x=1(nhận)
e: \(\Leftrightarrow3^x=\dfrac{3^{10}}{3^9}=3\)
hay x=1
f: =>x-1=20
hay x=21
a)Ta có: 1/2-(1/3+1/4)= -1/12
1/48-(1/16-1/6)=1/8
suy ra: -1/12<x<1/8
<=> -2/24<x<3/24
=>x thuộc:(-1/24 ;0 ;1/24 ;2/24 ;3/24)
Bài 1:
a) Ta có: \(\frac{-5}{8}+x=\frac{4}{9}\)
\(\Leftrightarrow x=\frac{4}{9}-\frac{-5}{8}=\frac{32}{72}-\frac{-45}{72}\)
hay \(x=\frac{77}{72}\)
Vậy: \(x=\frac{77}{72}\)
b) Ta có: \(1\frac{3}{4}\cdot x+1\frac{1}{2}=-\frac{4}{5}\)
\(\Leftrightarrow\frac{7}{4}\cdot x+\frac{3}{2}=-\frac{4}{5}\)
\(\Leftrightarrow\frac{7}{4}\cdot x=-\frac{4}{5}-\frac{3}{2}=-\frac{23}{10}\)
\(\Leftrightarrow x=\frac{-23}{10}:\frac{7}{4}=\frac{-23}{10}\cdot\frac{4}{7}\)
hay \(x=-\frac{46}{35}\)
Vậy: \(x=-\frac{46}{35}\)
c) Ta có: \(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\)
\(\Leftrightarrow\frac{3}{4}x=\frac{2}{4}\)
\(\Leftrightarrow x=\frac{2}{4}:\frac{3}{4}=\frac{2}{4}\cdot\frac{4}{3}\)
hay \(x=\frac{2}{3}\)
Vậy: \(x=\frac{2}{3}\)
d) Ta có: \(x\cdot\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)
\(\Leftrightarrow x\cdot\frac{9}{20}-\frac{15}{56}=0\)
\(\Leftrightarrow x\cdot\frac{9}{20}=\frac{15}{56}\)
\(\Leftrightarrow x=\frac{15}{56}:\frac{9}{20}=\frac{15}{56}\cdot\frac{20}{9}\)
hay \(x=\frac{25}{42}\)
Vậy: \(x=\frac{25}{42}\)
e) Ta có: \(\frac{3}{35}-\left(\frac{3}{5}+x\right)=\frac{2}{7}\)
\(\Leftrightarrow\frac{3}{35}-\frac{3}{5}-x=\frac{2}{7}\)
\(\Leftrightarrow\frac{-18}{35}-x=\frac{2}{7}\)
\(\Leftrightarrow-x=\frac{2}{7}-\frac{-18}{35}=\frac{2}{7}+\frac{18}{35}=\frac{4}{5}\)
hay \(x=-\frac{4}{5}\)
Vậy: \(x=-\frac{4}{5}\)
f) Ta có: \(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\)
\(\Leftrightarrow\frac{1}{7}\cdot\frac{1}{x}=\frac{3}{14}-\frac{3}{7}=\frac{-3}{14}\)
\(\Leftrightarrow\frac{1}{x}=\frac{-3}{14}:\frac{1}{7}=-\frac{3}{14}\cdot7=-\frac{3}{2}\)
\(\Leftrightarrow x=\frac{1\cdot2}{-3}=\frac{2}{-3}=-\frac{2}{3}\)
Vậy: \(x=-\frac{2}{3}\)
g) Ta có: \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{3}:2=\frac{1}{6}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{5};\frac{1}{6}\right\}\)