Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a3 + b3 = (a + b)3 – 3ab(a + b)
Thực hiện vế phải:
(a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2
= a3 + b3
Vậy a3 + b3 = (a + b)3 – 3ab(a + b)
b) a3 – b3 = (a – b)3 + 3ab(a – b)
Thực hiện vế phải:
(a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2
= a3 – b3
Vậy a3 – b3 = (a – b)3 + 3ab(a – b)
Áp dụng:
Với ab = 6, a + b = -5, ta được:
a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)
= -53 + 3 . 6 . 5 = -125 + 90 = -35.
a) Ta có : a3 + b3 = (a + b)3 – 3ab(a + b)
=> VP = (a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2
= a3 + b3
Vậy a3 + b3 = (a + b)3 – 3ab(a + b)
b) a3 – b3 = (a – b)3 + 3ab(a – b)
=> VP = (a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2
= a3 – b3
Vậy a3 – b3 = (a – b)3 + 3ab(a – b)
Áp dụng:
Với ab = 6, a + b = -5, ta được:
a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)
= -53 + 3 . 6 . 5 = -125 + 90 = -35.
\(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3=VT\)
=> ĐPCM
b; tương tự
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
= -5^3 - 3.6.-5 = -125 + 90 = - 35
C/M:
a)a^3+b^3=(a+b)^3-3a*b*(a+b)
VP=a^3+3*a^2*b+3*a*b^2+b^3-3*a^2*b-3*a*b^2
=a^3+b^3
Thay:a*b=6 và a+b=-5
Ta có:a^3+b^3=(a+b)*(a^2*a*b*b^2) =-5*(a^2*6*b^2)
Mà:a*b=6 nên a2*b2=62=36
Suy ra: =-5*(36*6)=-1080
Tương tự như câu a) làm câu b).Chúc bạn làm được câu b).
Mình không biết làm đúng hay sai nhan.Nhưng bạn cứ chép đáp án vào.
Bài 2 :
Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52
= 100a2 + 100a + 25
= 100a(a + 1) + 25.
Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.
Áp dụng;
- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.
- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.
- 652 = 4225
- 752 = 5625.
Bài 4 :
a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.
b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)2
=502 =2500
a) VP = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = a3 + b3 ( đpcm )
b) VP = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2 = a3 - b3 ( đpcm )
Áp dụng
a3 - b3 = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2
= ( a - b )3 + 3ab( a - b )
Thế ab = 8 ; a - b = 12 ta được
( 12 )3 + 3.8.12 = 1728 + 288 = 2016
Được cái khai triển ...
a, \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(VP=a^3+3a^2b+3b^2a+b^3-3a^2b-3ab^2\)
Ta có : \(VP=a^3+b^3\left(đpcm\right)\)
b, \(a^3+b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
Cách khác : \(\left(a-b\right)^3+3ab\left(a-b\right)=\left(a-b\right)^3+3ab\left(a-b\right)\)
Ta có đpcm
Ta có : \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
Thay ab = 8 và a - b = 12 :
\(12^3+3.8.12=2016\)
Ta có: \(a+b=1\)
\(\Leftrightarrow\left(a+b\right)^3=1^3\)
\(\Leftrightarrow a^3+3a^2.b+3a.b^2+b^3=1\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=1\)
Mà \(a+b=1\)
\(\Rightarrow a^3+b^3+3ab=1\)
\(\Rightarrow a^3+b^3=1-3ab\)
\(\Rightarrowđpcm\)
\(a^3+b^3\)
\(=\)\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\)\(a^2+b^2-ab\)
Từ \(a+b=1\)\(\Rightarrow\)\(\left(a+b\right)^2=0\)\(\Rightarrow\)\(a^2+b^2=1-2ab\)
Thay \(a^2+b^2=1-2ab\) vào \(a^2+b^2-ab\) ta được :
\(1-2ab-ab=1-3ab\) ( đpcm )
Chúc bạn học tốt ~
1) \(\left(a+b\right)^3=\left(a+b\right)\left(a+b\right)^2=\left(a+b\right)\left(a^2+2ab+b^2\right)\)
\(=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3\)
\(=a^3+3a^2b+3ab^2+b^3\)
2) \(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)\left(a^2-2ab+b^2\right)\)\(=a^3-2a^2b+ab^2-a^2b+2ab^2-b^3\)
\(=a^3-3a^2b+3ab^2-b^3\)
b) \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Biến đổi VT ta có :
+) \(a^3+b^3+c^3=ab+bc+ca\)
\(\Leftrightarrow3a^3+3b^3+3c^3=3ab+3bc+3ca\)
\(\Rightarrow\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=0\)
\(\Rightarrow a=b=c\)
< => VT = VP
=> đpcm
\(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3=VT\)
a) HS tự chứng minh.
b) Áp dụng tính được:
i) 9261; ii) 7880599;
iii) 5840; iv) 12140.