Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra, ta có:
+) A = \(\dfrac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)
= \(\dfrac{1+5+5^2+...+5^8}{1+5+5^2+...+5^8}\)+ \(\dfrac{5^9}{1+5+5^2+...+5^8}\)
= 1 + \(\dfrac{1}{\dfrac{1+5+5^2+...+5^8}{5^9}}\)
+) B = \(\dfrac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
= \(\dfrac{1+3+3^2+...+3^8}{1+3+3^2+...+3^8}\)+ \(\dfrac{3^9}{1+3+3^2+...+3^8}\)
= 1 + \(\dfrac{1}{\dfrac{1+3+3^2+...+3^8}{3^9}}\)
Nhận xét:
+) \(\dfrac{1+5+5^2+...+5^8}{5^9}\) = \(\dfrac{1}{5^9}\) + \(\dfrac{1}{5^8}\) + ... + \(\dfrac{1}{5^{ }}\)
+) \(\dfrac{1+3+3^2+...+3^8}{3^9}\) = \(\dfrac{1}{3^9}\) + \(\dfrac{1}{3^8}\) + ... + \(\dfrac{1}{3}\)
Có: \(\dfrac{1}{5^9}\) < \(\dfrac{1}{3^9}\) ; \(\dfrac{1}{5^8}\) < \(\dfrac{1}{3^8}\) ; ... ; \(\dfrac{1}{5^{ }}\) < \(\dfrac{1}{3}\)
⇒ \(\dfrac{1+5+5^2+...+5^8}{5^9}\) < \(\dfrac{1+3+3^2+...+3^8}{3^9}\)
⇒ \(\dfrac{1}{\dfrac{1+5+5^2+...+5^8}{5^9}}\) > \(\dfrac{1}{\dfrac{1+3+3^2+...+3^8}{3^9}}\)
⇒ A > B
Vậy A > B.
Giải:
a) Biến đổi tử:
Đặt:
\(C=1+5+5^2+5^3+...+5^9\)
\(\Leftrightarrow5C=5+5^2+5^3+5^4...+5^{10}\)
\(\Leftrightarrow5C-C=5^{10}-1\)
\(\Leftrightarrow4C=5^{10}-1\)
\(\Leftrightarrow C=\dfrac{5^{10}-1}{4}\)
Tương tự ta có mẫu là:
\(\dfrac{5^9-1}{4}\)
Đặt vào A, được:
\(A=\dfrac{1+5+5^2+5^3+...+5^9}{1+5+5^2+5^3+...+5^8}\)
\(\Leftrightarrow A=\dfrac{\dfrac{5^{10}-1}{4}}{\dfrac{5^9-1}{4}}\)
\(\Leftrightarrow A=\dfrac{5^{10}-1}{5^9-1}\)
Vậy ...
b) Tương tự câu a, ta được:
\(B=\dfrac{\dfrac{3^{10}-1}{2}}{\dfrac{3^9-1}{2}}\)
\(\Leftrightarrow B=\dfrac{3^{10}-1}{3^9-1}\)
Vậy ...
1:
a)10/20-15/20+16/20=-5/20+16/20
=11/20.
b)2/3+8/3:8/5=2/3+5/3
=7/3.
2:a)Ta có:
2x=1/4=3/4
2x=4/4=1
x=1:2
x=0,5
b)x:(2/12-1/12)=-3/8.
x:1/12=-3/8.
x=-3/8x1/12.
x=-1/32.
Bài 1:
a)
\(\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{x-1}{9}=\dfrac{24}{9}\\ \Leftrightarrow x-1=24\\ x=24+1\\ x=25\)
b)
\(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{8}\\ \dfrac{3x}{7}+1=\dfrac{-1}{8}\cdot\left(-4\right)\\ \dfrac{3x}{7}+1=\dfrac{1}{2}\\ \dfrac{3x}{7}=\dfrac{1}{2}-1\\ \dfrac{3x}{7}=\dfrac{-1}{2}\\ 3x=\dfrac{-1}{2}\cdot7\\ 3x=\dfrac{-7}{2}\\ x=\dfrac{-7}{2}:3\\ x=\dfrac{-7}{6}\)
c)
\(x+\dfrac{7}{12}=\dfrac{17}{18}-\dfrac{1}{9}\\ x+\dfrac{7}{12}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{12}\\ x=\dfrac{1}{4}\)
d)
\(0,5x-\dfrac{2}{3}x=\dfrac{7}{12}\\ \dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{7}{12}\\ x\cdot\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{7}{12}\\ \dfrac{-1}{6}x=\dfrac{7}{12}\\ x=\dfrac{7}{12}:\dfrac{-1}{6}\\ x=\dfrac{-7}{2}\)
e)
\(\dfrac{29}{30}-\left(\dfrac{13}{23}+x\right)=\dfrac{7}{46}\\ \dfrac{29}{30}-\dfrac{13}{23}-x=\dfrac{7}{46}\\ \dfrac{277}{690}-x=\dfrac{7}{46}\\ x=\dfrac{277}{690}-\dfrac{7}{46}\\ x=\dfrac{86}{345}\)
f)
\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\\ \left(x-\dfrac{1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\\ x-\dfrac{1}{12}=\dfrac{7}{46}\cdot\dfrac{23}{12}\\ x-\dfrac{1}{12}=\dfrac{7}{24}\\ x=\dfrac{7}{24}+\dfrac{1}{12}\\ x=\dfrac{3}{8}\)
g)
\(\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\\ \dfrac{13}{21}+x=\dfrac{2}{7}\\ x=\dfrac{2}{7}-\dfrac{13}{21}\\ x=\dfrac{-1}{3}\)
h)
\(2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\end{matrix}\right.\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\ \dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{29}{24}\\ x=\dfrac{29}{24}:\dfrac{1}{2}\\ x=\dfrac{29}{12}\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\\ \dfrac{1}{2}x=\dfrac{-7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{-13}{24}\\ x=\dfrac{-13}{24}:\dfrac{1}{2}\\ x=\dfrac{-13}{12}\)
i)
\(3\cdot\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=0-\dfrac{1}{9}\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}:3\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{27}\\ \left(3x-\dfrac{1}{2}\right)^3=\left(\dfrac{-1}{3}\right)^3\\ \Leftrightarrow3x-\dfrac{1}{2}=\dfrac{-1}{3}\\ 3x=\dfrac{-1}{3}+\dfrac{1}{2}\\ 3x=\dfrac{1}{6}\\ x=\dfrac{1}{6}:3\\ x=\dfrac{1}{18}\)
\(1,\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=\frac{12}{15}+\frac{12}{35}+\frac{12}{63}+\frac{12}{99}=6\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)=6\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).Tacocongthuc:\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\Rightarrow\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=6\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.....-\frac{1}{11}\right)=6\left(\frac{1}{3}-\frac{1}{11}\right)=\frac{48}{33}=\frac{16}{11}\)
\(2,\left(x+1\right)+\left(x+2\right)+.....+\left(x+211\right)=211x+\left(1+2+....+211\right)=211x+\frac{212.211}{2}=211x+22366=23632\Leftrightarrow211x=23632-22366=1266\Leftrightarrow x=6\)
a, \(14:\left(4\frac{2}{3}:1\frac{5}{9}\right)+14:\left(\frac{2}{3}+\frac{8}{9}\right)\)
=> \(14:\frac{28}{9}+14:\frac{14}{9}=>14.\frac{9}{28}+14.\frac{9}{14}\)
=> 14. ( \(\frac{9}{28}+\frac{9}{14}\) )
=> \(14.\frac{27}{28}=\frac{419}{28}\)
b, \(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
=> \(\frac{4}{5}+\frac{12}{35}+\frac{4}{21}+\frac{4}{33}\)
=> \(\frac{8}{7}+\frac{24}{77}=\frac{16}{11}\)
bài 2 :
( x + 1 ) + ( x + 2 ) + ... + ( x + 211 ) = 23632
=> ( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 211 ) = 23632
=> 211x + 22366 = 23632
=> 211x = 23632 - 22366
=> 211x = 1266
=> x = 1266 : 211
x = 6
Bài 1
a) \(\frac{1}{2}+\frac{3}{8}:3-\frac{3}{16}.2^3 \)
\(=\frac{1}{2}+\frac{3}{8}.\frac{1}{3}-\frac{3}{16}.8 \)
\(=\frac{1}{2}+\frac{1}{8}-\frac{3}{2} \)
\(=\frac{4}{8}+\frac{1}{8}-\frac{12}{8} \)
\(=\frac{-7}{8}\)
Sao không có đề vậy bạn?