Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x =1; y = –1 và z = –2 vào biểu thức ta được :
xy2 + y2z3 + z3x4
= 1.(–1)2 + (–1)2(–2)3 + (–2)3.14
= 1.1 + 1. (–8) + (–8).1
= 1 + (–8) + (–8)
= –15
Vậy đa thức có giá trị bằng –15 tại x =1 ; y = –1 và z = –2 .
a) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
2xy(5x2y + 3x – z) = 2.1(–1).[5.12.(–1) + 3.1 – (–2)]
= -2[–5 + 3 +2] = –2.0 = 0
Vậy đa thức có giá trị bằng 0 tại x = 1 ; y = –1 và z = –2.
b) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
xy2 + y2z3 + z3x4 = 1.(–1)2 + (–1)2(–2)3 + (–2)314
= 1 + (–8) + (–8) = –15
Vậy đa thức có giá trị bằng -15 tại x = 1 ; y = –1 và z = –2.
a) Đặt P = 2xy(5x² +3x – z) Với x = 1; y = -1 và z = -2 ta có:
P = 2.1(-1).[5.1².(-1) + 3.1 – (-2)] = -2(-5 + 3 +2) = -2.0 = 0
Vậy P = 0
b) Đặt Q = xy² +y²z³ + z³X4. Với x =1; y = -1 và z = -2, ta có:
Q = 1.(-1)² + (-1)².(-2)³ .14 = 1 – 8 – 8 = -15
Vậy Q = -15.
\(2xy\left(5x^2y+3x-z\right)\)
\(=2.1.-1.\left(5.1^2.-1+3.1-\left(-2\right)\right)\)
\(=-2.\left(-5+3-\left(-2\right)\right)\)
\(=-2.\left(-2-\left(-2\right)\right)\)
\(=-2.0=0\)
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
a. Thay x = 1/3 ; y = - 1/5 vào biểu thức ta có:
3.1/3 - 5.(-1/5 ) + 1 = 1 + 1 + 1 = 3
Vậy giá trị của biểu thức 3x – 5y + 1 tại x = 1/3 ; y = - 1/5 là 3.
b. *Thay x = 1 vào biểu thức ta có:
3.12 – 2.1 – 5 = 3 – 2 – 5 = -4
Vậy giá trị của biểu thức 3x2 – 2x – 5 tại x = 1 là -4.
*Thay x = -1 vào biểu thức ta có:
3.(-1)2 – 2.(-1) – 5 = 3.1 + 2 – 5 = 0
Vậy giá trị của biểu thức 3x2 – 2x – 5 tại x = -1 là 0.
*Thay x = 5/3 vào biểu thức ta có:
3.(5/3 )2 – 2.5/3 – 5 = 3.25/9 – 10/3 – 15/3 = 0
Vậy giá trị của biểu thức 3x2 – 2x – 5 tại x = 5/3 là 0.
c. Thay x = 4, y = -1, z = -1 vào biểu thức ta có:
4 – 2.(-1)2 + (-1)3 = 4 – 2.1 + (-1) = 4 - 2 – 1= 1
Vậy giá trị của biểu thức x – 2y2 + z3 tại x = 4, y = -1, z = -1 là 1.
Thay x =1 ; y = –1 và z = –2 vào biểu thức ta được
2xy (5x2y + 3x – z)
= 2.1(–1).[5.12.( –1) + 3.1 – (–2)]
= – 2.[5.1.( –1) + 3 + 2]
= –2. (–5 + 3 + 2)
= –2.0
= 0
Vậy đa thức có giá trị bằng 0 tại x =1; y = –1 và z = –2.
1,b, 2xy - x = y + 5
<=> 4xy - 2x = 2y + 10
<=> 2x(2y - 1) - (2y - 1) = 11
<=> (2x - 1)(2y - 1) = 11
Lập bảng ra làm nốt
\(1,c,\frac{1}{x}-3=-\frac{1}{y-2}\)
\(\Leftrightarrow y-2-3x\left(y-2\right)=-x\)
\(\Leftrightarrow y-2-3xy+6x+x=0\)
\(\Leftrightarrow-3xy+7x+y-2=0\)
\(\Leftrightarrow-x\left(3y-7\right)+y-2=0\)
\(\Leftrightarrow-3x\left(3y-7\right)+3y-6=0\)
\(\Leftrightarrow-3x\left(3y-7\right)+\left(3y-7\right)=-1\)
\(\Leftrightarrow\left(1-3x\right)\left(3y-7\right)=-1\)
Lập bảng làm nốt
a: Thay x=1; y=-1 và z=-2 vào biểu thức \(2xy\left(5x^2y+3x-z\right)\), ta được:
\(2\cdot1\cdot\left(-1\right)\cdot\left(-5+3+2\right)\)
=0
b: Thay x=1; y=-1 và z=-2 vào biểu thức \(xy^2+y^2z^3+z^3x^4\), ta được:
\(1\cdot\left(-1\right)^2+\left(-1\right)^2\cdot\left(-8\right)+\left(-8\right)\cdot1\)
\(=1-8-8=-15\)