GIÚP EM VỚI Ạ, CHIỀU NAY EM THI RỒI :(

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A(m-1;-1); B(2;2-2m); C(m+3;3)

\(\overrightarrow{AB}=\left(2-m+1;2-2m+1\right)\)

=>\(\overrightarrow{AB}=\left(3-m;3-2m\right)\)

\(\overrightarrow{AC}=\left(m+3-m+1;3+1\right)\)

=>\(\overrightarrow{AC}=\left(4;4\right)\)

Để A,B,C thẳng hàng thì \(\dfrac{3-m}{4}=\dfrac{3-2m}{4}\)

=>3-m=3-2m

=>m=0

NV
4 tháng 1 2024

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(3-m;3-2m\right)\\\overrightarrow{AC}=\left(4;4\right)\end{matrix}\right.\)

3 điểm A;B;C thẳng hàng khi và chỉ khi \(\overrightarrow{AB}=k\overrightarrow{AC}\) với \(k\ne0\)

Hay \(\dfrac{3-m}{4}=\dfrac{3-2m}{4}\Rightarrow m=0\)

24 tháng 8 2017

Đáp án B

E trên trục hoành nên E(x;0)

A(6;3); B(-3;6); E(x;0)

\(\overrightarrow{AB}=\left(-9;3\right);\overrightarrow{AE}=\left(x-6;-3\right)\)

Để A,B,E thẳng hàng thì \(\dfrac{x-6}{-9}=\dfrac{-3}{3}=-1\)

=>x-6=9

=>x=15

Vậy: E(15;0)

NV
4 tháng 1 2024

Do E thuộc trục hoành nên tọa độ có dạng \(E\left(x;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-9;3\right)\\\overrightarrow{AE}=\left(x-6;-3\right)\end{matrix}\right.\)

3 điểm A, B, E thẳng hàng khi:

\(\dfrac{x-6}{-9}=\dfrac{-3}{3}\Rightarrow x-6=9\)

\(\Rightarrow x=15\Rightarrow E\left(15;0\right)\)

Câu 1: 

a: Vì I thuộc trục Ox nên I(x;0)

\(\overrightarrow{AI}=\left(x+1;-1\right)\)

\(\overrightarrow{AB}=\left(1;2\right)\)

Vì A,I,B thẳng hàng nên \(\dfrac{x+1}{1}=-\dfrac{1}{2}\)

=>x=-3/2

b: \(\overrightarrow{AM}=\left(m+5;2m\right)\)

Vì A,M,B thẳng hàng nên \(\dfrac{m+5}{1}=\dfrac{2m}{2}\)

=>m+5=m(vô lý)

17 tháng 5 2017

\(\overrightarrow{AB}\left(-3;2\right)\); \(\overrightarrow{AC}\left(1;m-2\right)\).
Ba điểm A, B, C thẳng hàng khi và chỉ khi:
\(\dfrac{1}{-3}=\dfrac{m-2}{2}\Leftrightarrow-3\left(m-2\right)=2\)\(\Leftrightarrow m=\dfrac{4}{3}\).

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

I là trọng tâm của ΔABC

=>\(\left\{{}\begin{matrix}x_A+x_B+x_C=3\cdot x_I\\y_A+y_B+y_C=3\cdot y_I\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3+\left(-1\right)+x_C=3\cdot1=3\\-1+2+y_C=3\cdot1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_C=3-2=1\\y_C=3-1=2\end{matrix}\right.\)

Vậy: C(1;2)

Ta có: A(3;-1); B(-1;2); C(1;2); D(x;y)

=>\(\overrightarrow{AB}=\left(-4;3\right);\overrightarrow{DC}=\left(1-x;2-y\right)\)

ABCD là hình bình hành

=>\(\overrightarrow{AB}=\overrightarrow{DC}\)

=>\(\left\{{}\begin{matrix}1-x=-4\\2-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)

Vậy: D(5;-1)

Tâm O của hình bình hành ABCD sẽ là trung điểm của AC

A(3;-1); C(1;2); O(x;y)

=>\(\left\{{}\begin{matrix}x=\dfrac{3+1}{2}=\dfrac{4}{2}=2\\y=\dfrac{-1+2}{2}=\dfrac{1}{2}\end{matrix}\right.\)

NV
4 tháng 1 2024

Áp dụng công thức trọng tâm:

\(\left\{{}\begin{matrix}x_A+x_B+x_C=3x_I\\y_A+y_B+y_C=3y_I\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=3x_I-\left(x_A+x_B\right)=1\\y_C=3y_I-\left(y_A+y_B\right)=2\end{matrix}\right.\)

\(\Rightarrow C\left(1;2\right)\)

Đặt tọa độ D là \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-4;3\right)\\\overrightarrow{DC}=\left(1-x;2-y\right)\end{matrix}\right.\)

ABCD là hình bình hành \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}1-x=-4\\2-y=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\) \(\Rightarrow D\left(5;-1\right)\)

Tâm O hình bình hành là trung điểm đường chéo AC nên áp dụng công thức trung điểm:

\(\left\{{}\begin{matrix}x_O=\dfrac{x_A+x_C}{2}=2\\y_O=\dfrac{y_A+y_C}{2}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow O\left(2;\dfrac{1}{2}\right)\)

1 tháng 6 2020
https://i.imgur.com/YT9pqQw.jpg
NV
6 tháng 1 2024

Theo công thức trung điểm:

\(\left\{{}\begin{matrix}x_M=2x_B-x_A=5\\y_M=2y_B-y_A=6\end{matrix}\right.\) \(\Rightarrow M\left(5;6\right)\)

6 tháng 1 2024

Để B là trung điểm của đoạn thẳng AM, ta cần tìm tọa độ của điểm M.

Theo định nghĩa, trung điểm của một đoạn thẳng là điểm nằm ở giữa hai đầu mút của đoạn đó. Ta áp dụng công thức trung điểm để tìm tọa độ của M.

Công thức trung điểm: M(xM, yM) là trung điểm của đoạn AB <=> (xM, yM) = ((xA + xB)/2, (yA + yB)/2).

Ứng với A(1; -2) và B(3; 2): xM = (1 + 3)/2 = 2, yM = (-2 + 2)/2 = 0.

Vậy tọa độ của điểm M là M(2; 0).

Đáp án đúng là: B. M(2; 0).

Bài 1: Cho tam giác ABC có A(4;3), B(-1;2), C(3;-2). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. Bài 2: Trong mặt phaửng Oxy, cho ba điểm A(-1;1), B(1;3), C(-2;0). Chứng minh rằng ba điểm A, B, C thẳng hàng. Bài 3: Trong mặt phẳng Oxy, cho 2 điểm A(3;-5), B(1;0). a) Tìm tọa độ điểm C sao cho: \(\overrightarrow{OC}\) \(=-3\overrightarrow{AB}\) b) Tìm điểm D đối xứng của A qua C Bài 4: Trong mặt phẳng Oxy, cho ba...
Đọc tiếp

Bài 1: Cho tam giác ABC có A(4;3), B(-1;2), C(3;-2). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Bài 2: Trong mặt phaửng Oxy, cho ba điểm A(-1;1), B(1;3), C(-2;0). Chứng minh rằng ba điểm A, B, C thẳng hàng.

Bài 3: Trong mặt phẳng Oxy, cho 2 điểm A(3;-5), B(1;0).

a) Tìm tọa độ điểm C sao cho: \(\overrightarrow{OC}\) \(=-3\overrightarrow{AB}\)

b) Tìm điểm D đối xứng của A qua C

Bài 4: Trong mặt phẳng Oxy, cho ba điểm A(1;-2), B(0;4), C(3;2)

a) Tìm tọa độ các vector \(\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{BC}\)

b) Tìm tọa độ trung điểm I của đoạn AB

c) Tìm tọa độ điểm M sao cho: \(\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}\)

d) Tìm tọa độ điểm N sao cho: \(\overrightarrow{AN}+2\overrightarrow{BN}-4\overrightarrow{CN}=\overrightarrow{0}\)

0