Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔIAB và ΔICD có
góc IAB=góc ICD
goc AIB=góc CID
=>ΔIAB đồng dạng với ΔICD
=>IB/ID=AB/CD=BM/MC
=>IM//DC
=>IM vuông góc AD
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
A B C D E M P F N Q 8cm 12cm
Theo giả thiết ta có:
AE = EM = MP = PD => AE + EM = MP+PD
C/ m tương tự ta có: BF +FN = NQ + QC
=> MN là đg TB hình thang ABCD
\(\Rightarrow MN=\frac{AB+CD}{2}=\frac{8+12}{2}=10\left(cm\right)\)
C/m tương tự ta có:
\(EF=\frac{AB+MN}{2}=\frac{8+10}{2}=9\left(cm\right)\)
\(PQ=\frac{MN+CD}{2}=\frac{10+12}{2}=11\left(cm\right)\)
Vậy...
Xét ΔDAC có MI//AC
nên \(\dfrac{DI}{DC}=\dfrac{DM}{DA}\)
mà \(\dfrac{DM}{DA}=\dfrac{BN}{BC}\)
nên \(\dfrac{DI}{DC}=\dfrac{DM}{DA}=\dfrac{BN}{BC}\)
=>Các tỉ số bằng với tỉ số DI/DC là \(\dfrac{DM}{DA};\dfrac{BN}{BC}\)
C.ơn ạaaa