Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có:\(\begin{matrix}T_1=2\pi\sqrt{\frac{m_1}{k}}\\T_2=2\pi\sqrt{\frac{m_2}{k}}\end{matrix}\)} \(\rightarrow\frac{T_2}{T_1}=\sqrt{\frac{m_2}{m_1}}\)
+ Theo đề bài thời gian con lắc thứ nhất thực hiện 10 dao động bằng thời gian con lắc thứ hai thực hiện 5 dao động: \(\Delta t=10T_1=5T_2\rightarrow\frac{T_2}{T_1}=2\)
+ Từ hai biểu thức trên ta có m2 = 4m1
+ Mặt khác, con lắc gồm hai vật m1 và m2 có chu kì dao động là \(T=2\pi\sqrt{\frac{m_1+m_2}{k}}\rightarrow m_1+m_2=\frac{kT_2}{\left(2\pi\right)^2}=5\)
Giải hệ phương trình ra ta có: m1 = 1 kg; m2 = 4 kg
Đáp án B
Chu kì dao động \(T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{m}{k}}\)
Độ giãn cua lò xo lúc ở VTBC : \(\Delta l_0=\frac{mg}{k}\rightarrow\sqrt{\frac{k}{m}}=\sqrt{\frac{\Delta l_0}{g}}\)
Vậy \(T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{m}{k}}=2\pi\sqrt{\frac{\Delta l_0}{g}}=0,628s\)
Chọn C
- Bước sóng: \(\lambda=\frac{40}{20}=2cm\)
- Trước hết, ta cần tìm các điểm dao động với biên độ 5cm trong khoảng AB.
+ Giả sử điểm M cách A là d dao động với biên độ 5cm (hình vẽ)
A B M d 10-d
+ Nhận xét: \(5^2=3^2+4^2\) nên để M dao động với biên độ 5cm thì sóng do A và B đến M phải vuông pha nhau.
+ Pha dao động do A --> M: \(\varphi_1=\frac{\pi}{6}-\frac{2\pi d}{\lambda}\)
+ Pha dao động do B --> M: \(\varphi_2=\frac{2\pi}{3}-\frac{2\pi\left(10-d\right)}{\lambda}\)
+ Độ lệch pha 2 dao động này: \(\Delta\varphi=\frac{2\pi}{3}-\frac{2\pi\left(10-d\right)}{\lambda}-\left(\frac{\pi}{6}-\frac{2\pi d}{\lambda}\right)=\frac{\pi}{2}+\frac{2\pi\left(2d-10\right)}{\lambda}\)
Để 2 dao động đến M vuông pha thì: \(\Delta\varphi=\frac{\pi}{2}+k\pi\Leftrightarrow\frac{\pi}{2}+\frac{2\pi\left(2d-10\right)}{\lambda}=\frac{\pi}{2}+k\pi\Leftrightarrow d=\frac{k.\lambda}{4}+5\)
\(\Leftrightarrow d=\frac{k}{2}+5\)
Bước sóng: 2cm
Tổng số bó sóng: 10 : (2/2) = 10 bó
Mỗi bó có 2 điểm có biên độ là 5cm.
Tổng số điểm có biên độ 5cm trên đoạn AB là 10.2 = 20 điểm
Trên cả đường tròn có số các điểm là: 20 . 2 = 40 điểm.
P/S: Mình giải trong trường hợp 2 nguồn cùng pha, còn 2 nguồn vuông pha như bài toán này bạn cần khảo sát tính chất chất của điểm cực đại.
Áp dụng CT: \(\dfrac{hc}{\lambda}=\dfrac{hc}{\lambda_0}+W_đ\)
\(\Rightarrow W_đ= \dfrac{hc}{\lambda}-\dfrac{hc}{\lambda_0}= \dfrac{3hc}{\lambda_0}-\dfrac{hc}{\lambda_0}=\dfrac{2hc}{\lambda_0}\)
TL
a) Hai dao động thành phần cùng pha: biên độ dao động tổng hợp là lớn nhất và bằng tổng hai biên độ: A=A1+A2
b) Hai dao động thành phần ngược pha: biên độ dao động tổng hợp là nhỏ nhất và bằng giá trị tuyệt đối của hiệu hai biên độ: A=|A1−A2|
c) Hai dao động có thành phần có pha vuông góc:
A=A12+A22
Biên độ dao động tổng hợp phụ thuộc vào độ lệch pha Δφ = φ2 - φ1
Nếu hai dao động thành phần ngược pha: Δφ = φ2 - φ1 = (2n + 1)π (n = 0, ± 1,± 2,…) thì biên độ dao động tổng hợp là nhỏ nhất A = |A1 - A2 |
a)
Hai dao động thành phần cùng pha: biên độ dao động tổng hợp là lớn nhất và bằng tổng hai biên độ: A1 + A2 = A
b)
Hai dao động thành phần ngược pha: biên độ dao động tổng hợp là nhỏ nhất và bằng giá trị tuyệt đối của hiệu hai biên độ: |A1 - A2|=A
c)
Hai dao động có thành phần có pha vuông góc: √ (A12 + A22) = A
HT :vvv
Gọi hình chiếu của điểm M trên AB là N, trung điểm của AB là O, đặt ON = x \(\Rightarrow\) \(AM=\sqrt{4+\left(4-x\right)^2}\)\(,BM=\sqrt{4+\left(4+x\right)^2}\)
\(\vartheta BM=\frac{2\pi BM}{\lambda}\)
\(\vartheta AM=\frac{2\pi AM}{\lambda}\)
\(\Rightarrow\frac{2\pi}{\lambda}\left(MB-MA\right)=\left(2k+1\right)\lambda\pi\)
Min khi k = 0 \(\Leftrightarrow\sqrt{4+\left(4+x\right)^2}-\sqrt{4+\left(4-x\right)^2}\)\(=1\Rightarrow x\approx0,56\left(cm\right)\)
chọn đáp án A
hãy follow instagram của tớ nhé:Luzu_ne