Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n^2 + 2n - 4 = n^2 + 2n - 15 + 11
= (n^2 + 5n - 3n -15) + 11
= (n - 3)(n + 5) + 11 để n^2 + 2n - 4 chia hết cho 11
<=> (n - 3).(n +5) chia hết cho 11
<=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)
n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)
n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)
Vậy với n = 11k + 3 hoặc n = 11k' - 5 thì.....
b)Sửa thành 2n^3 + n^2 +7n+1 mới lm đc nha!!
2n^3 + n^2 + 7n + 1 = n^2. (2n - 1) + 2n^2 + 7n + 1
= n^2. (2n -1) + n.(2n -1) + 8n + 1
= (n^2 + n)(2n -1) + 4.(2n -1) + 5
= (n^2 + n + 4)(2n -1) + 5
Để 2n^3 + n2 + 7n + 1 chia hết cho 2n - 1
<=> (n^2 + n + 4)(2n -1) + 5 chia hết cho 2n -1
<=> 5 chia hết cho 2n -1
<=> 2n - 1 ∈Ư(5) = {-5;-1;1;5}
.......
ai giup vs
Cho x,y là hai số thoả mãn 2(x2+y2)=(x-y)2 Khi đó ta có hệ thức biểu diễn mối quan hệ giữa x,y là x=....y
giải chi tiết nha
a, lấy n3-2 chia cho n-2 sẽ được n2+2n+4 dư 6
=> 6 phải chia hết cho n-2
=> n-2 thuộc {-+1;-+2;-+3;-+6}
=> n thuộc {-4;-1;0;1;3;4;5;8}
Xét :\(\frac{n^5+1}{n^3+1}=\frac{n^5+n^2-n^2+1}{n^3+1}=\frac{n^2\left(n^3+1\right)-\left(n^2-1\right)}{\left(n^3+1\right)}\)
\(=n^2-\frac{\left(n^2-1\right)}{\left(n^3+1\right)}\)
để \(n^5+1\)chia hết \(n^3+1\)thì \(n^2-1\)cũng phải chia hết \(n^3+1\)vì bậc của tử nhỏ hơn bậc mẫu nên chỉ có thể sảy ra hai trường hợp với n nguyên dương :\(n^2-1=n^3+1\)hoặc \(n^2-1=0\)
TH1 : \(n^2-1=0\Leftrightarrow n^2=1\Leftrightarrow n=1\)
TH2 :\(n^2-1=n^3+1\Leftrightarrow n^3-n^2+2=0\)\(\Leftrightarrow\left(n+1\right)\left(n^2-2n+2\right)=0\)vì n nguyên dương \(\Rightarrow n^2-2n+2=0\Leftrightarrow\left(n-1\right)^2+1=0\left(VN\right)\)Vì \(\left(n-1\right)^2+1\ge1\forall n\)
Vậy \(n=1\)
Giải:
Ta có: \(\dfrac{n^2+3}{n+1}\)
\(=\dfrac{n^2+n-n-1+4}{n+1}\)
\(=\dfrac{n\left(n+1\right)-\left(n+1\right)+4}{n+1}\)
\(=\dfrac{n\left(n+1\right)}{n+1}-\dfrac{n+1}{n+1}+\dfrac{4}{n+1}=n-1+\dfrac{4}{n+1}\)
Để \(n^2+3⋮x+1\) thì \(4⋮n+1\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2\pm4\right\}\) (đk: \(n\ne-1\))
\(\Rightarrow n\in\left\{-5;-3;-2;0;1;3\right\}\) (t/m)
Vậy ...
#CHÚC BẠN HỌC TỐT#