Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)
b: Xét ΔMNP vuông tại M có MH là đường cao
nên MH*NP=MN*MP
=>MH*10=6*8=48
=>MH=4,8cm
Xét ΔMNP có MD là phân giác
nên \(MD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)
c: MN*sinP+MP*sinN
=MN*MN/NP+MP*MP/NP
=(MN^2+MP^2)/NP
=NP^2/NP
=NP
Xét ΔABC vuông tại A có
\(AB=BC\cdot\cos30^0=4\sqrt{3}\simeq6,928\left(cm\right)\)
Ta có: ΔABC vuông tại B
nên \(\widehat{A}+\widehat{C}=90^0\)
hay \(\widehat{C}=23^0\)
Xét ΔABC vuông tại B có
\(AC=\dfrac{AB}{\cos67^0}\)
\(\Leftrightarrow AC\simeq20,47\left(cm\right)\)
\(\Leftrightarrow BC\simeq18,84\left(cm\right)\)
\(AB=\cos B\cdot BC=\dfrac{1}{2}\cdot20=10\left(cm\right)\\ AC=\sin B\cdot BC=\dfrac{\sqrt{3}}{2}\cdot20=10\sqrt{3}\approx17,3205\left(cm\right)\\ \widehat{C}=90^0-\widehat{B}=30^0\)