K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

Đề bài là gì vậy ạ?

1 tháng 4 2018

mk chỉ cho cách lm ; bn tự lm cho bt nha

câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)

tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)

câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)

là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)

10 tháng 2 2020

a) △ = \(m^2-28\ge0\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{28}\\m\le-\sqrt{28}\end{matrix}\right.\)

Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2\\x_1x_2=7\end{matrix}\right.\)

\(\Rightarrow m^2=24\)\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{24}\\m=-\sqrt{24}\end{matrix}\right.\)(không thỏa mãn)

b) △ = \(4-4\left(m+2\right)\ge0\)\(\Leftrightarrow m\le-1\)

Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m+2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_2-x_1\right)^2+4x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)

\(\Rightarrow4+4\left(m+2\right)=4\)\(\Leftrightarrow m=-2\)(thỏa mãn)

c) △ = \(\left(m-1\right)^2-4\left(m+6\right)\)\(\ge0\)\(\Leftrightarrow m^2-2m+1-4m-24\ge0\)

\(\Leftrightarrow m^2-6m-23\ge0\)

\(\Leftrightarrow\left(m-3\right)^2\ge32\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{32}+3\\m\le-\sqrt{32}+3\end{matrix}\right.\)

Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=m+6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2-2m+1\\x_1x_2=m+6\end{matrix}\right.\)

\(\Rightarrow10+2\left(m+6\right)=m^2-2m+1\)

\(\Leftrightarrow m^2-4m-21=0\)\(\Leftrightarrow\left(m+3\right)\left(m-7\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-3\end{matrix}\right.\)\(\Leftrightarrow m=-3\)(thỏa mãn)

mấy câu kia cũng dùng Vi-ét xử tiếp nha

12 tháng 4 2016

a)     Tâm I(2 ; -4), R = 5

b)    Đường tròn có phương trình:    (x – 2 )2 + (y + 4)2  = 25

Thế tọa độ A(-1 ; 0) vào vế trái, ta có :

(-1- 2 )2 + (0 + 4)2  = 32 + 42 = 25

Vậy A(-1 ;0) là điểm thuộc đường tròn.

Áp dụng công thức tiếp tuyến (Xem sgk)

Ta được pt tiếp tuyến với đường tròn tai A là:

(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25   <=>   3x – 4y + 3 = 0

Chú ý:

1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:

Vectơ    = (-3; 4)

Tiếp tuyến đi qua A(-1; 0) và nhận  làm một vectơ pháp tuyến có phương trình:

-3(x + 1) + 4(y – 0) = 0  ,<=> 3x – 4y + 3 = 0

NV
4 tháng 10 2020

1.

\(\left|mx-3\right|=mx-3\Leftrightarrow mx-3\ge0\)

\(\Leftrightarrow mx\ge3\)

\(x^2-4=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) \(\Rightarrow B=\left\{-2;2\right\}\)

\(B\backslash A=B\Leftrightarrow A\cap B=\varnothing\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2m< 3\\2m< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\frac{3}{2}\\m< \frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow-\frac{3}{2}< m< \frac{3}{2}\)

2.

\(A=\left(-\infty;-3\right)\cup\left(\sqrt{6};+\infty\right)\)

À thôi nhìn tập \(C_RB\) thấy kì kì

Đề là \(\left(-5;2\right)\cup\left(\sqrt{3};\sqrt{11}\right)\) hay \(\left(-5;-2\right)\cup\left(\sqrt{3};\sqrt{11}\right)\) vậy bạn?

Vì đề như bạn ghi thì \(2>\sqrt{3}\) nên \(\left(-5;2\right)\cup\left(\sqrt{3};\sqrt{11}\right)=\left(-5;\sqrt{11}\right)\) luôn còn gì, người ta ghi dạng hợp 2 khoảng làm gì nữa?

4 tháng 10 2020

Đề là (-5;2) \(\cup\) (\(\sqrt{3}\); \(\sqrt{11}\)) đó bạn!

12 tháng 4 2016

Gọi R là bán kính của đường tròn (C)

(C) và Ctiếp xúc ngoài với nhau, cho ta:

MF1 = R1+ R  (1)

(C) và Ctiếp xúc ngoài với nhau, cho ta:

MF2 = R2 – R  (2)

Từ (1) VÀ (2) ta được 

MF1  +   MF2 = R1+ R2= R không đổi

Điểm M có tổng  các khoảng cách MF1  +   MF2 đến hai điểm cố định Fvà F2   bằng một độ dài không đổi R1+ R2

Vậy tập hợp điểm M là đường elip, có các tiêu điểm Fvà F2   và có tiêu cự

F1 .F2 = R1+ R2

26 tháng 4 2017

a) Ta có: d(M;\(\Delta\))=\(\dfrac{\left|3.1+4.2-1\right|}{\sqrt{3^2+4^2}}=2\)

PTTS của \(\Delta\):\(\left\{{}\begin{matrix}x=4t-1\\y=3t-1\end{matrix}\right.\)

Gọi H là hình chiếu của M trên\(\Delta\)=>\(\exists t\in R\)để H(4t-1;3t-1)

MH=2 =>(4t-2)2+(3t+1)2=4

<=>25t2+10t+1=0

<=>(5t+1)2=0

<=>\(t=-\dfrac{1}{5}\)

=>H\(\left(-\dfrac{9}{5};-\dfrac{8}{5}\right)\)

M' đối xứng với M qua \(\Delta\)=> H là TĐ của MM'

=>tọa độ M'\(\left(-\dfrac{23}{5};-\dfrac{6}{5}\right)\)

b)\(\Delta'\)đối xứng \(\Delta\)qua M=>VTPT của \(\Delta'\)\(\overrightarrow{n}=\left(3;-4\right)\)(1)

Lấy I(-1;-1) => I thuộc \(\Delta\)

Lấy I' đối xứng I qua M=>I'(3;-3) \(\in\Delta'\)(2)

Từ (1) và (2) => phương trình \(\Delta':\)3(x-3)-4(y+3)=0

hay 3x-4y-21=0

c)Đường tròn (C) có tâm M(1;-2) tiếp xúc \(\Delta\)=> bán kính đường tròn bằng \(d_{\left(M;\Delta\right)}\)=2

=>Phương trình đường tròn:

(C): (x-1)2+(y+2)2=4