Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\)
\(\circledast\) Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
Khi đó \(P=\dfrac{-abc}{abc}=-1\)
\(\circledast\)Với \(a+b+c\ne0\),áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)Khi đó: \(\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\Leftrightarrow P=\dfrac{8abc}{abc}=8\)
bạn ơi , \(\frac{a+b-c}{c}=\frac{b+c-a}{a}\)
hay \(\frac{1+b-c}{c}-\frac{b+c-a}{a}\) vậy bn??//
\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
Khi đó \(P=\dfrac{-abc}{abc}=-1\)
Với \(a+b+c\ne0\) ,áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\a+c=2b\end{matrix}\right.\)
Khi đó \(P=\dfrac{8abc}{abc}=8\)
Bài 1:
Ta có:
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)
\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+...+\dfrac{100}{100!}-\dfrac{1}{100!}\)
\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{99!}-\dfrac{1}{100!}\)
\(=1-\dfrac{1}{100!}\)
Mà \(1-\dfrac{1}{100!}< 1\)
Nên \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\) (Đpcm)
Bài 2:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)
Thay vào biểu thức ta có:
\(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
\(=\dfrac{a+b}{a}.\dfrac{c+a}{c}.\dfrac{b+c}{b}\)
\(=\dfrac{2a.2b.2c}{abc}\)
\(=\dfrac{8\left(abc\right)}{abc}=8\)
Vậy \(B=8\)
bài 3:
Ta có a+2b+ac= -1/2
<=> 1/2+a+2b+ac=0
chia 2 vế cho 4 ta được: \(\frac{ }{12}\)(1/2)^3+a(1/2)^3+b(1/2)+c=0
<=> 1/8+a/4+b/2+c=0
<=> P(1/2)=0
Vậy x=1/2 là một nghiệm của đa thức\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Câu 1:
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)
Để A nguyên =>x là số chính phương và \(\sqrt{x}-3\) là ước của 4
Mà Ư(4)={-4;-2;-1;1;2;4}
\(\sqrt{x}-3=-4\Rightarrow\sqrt{x}=-1\Rightarrow\) không có x thỏa mãn
\(\sqrt{x}-3=-2\Rightarrow\sqrt{x}=1\Rightarrow x=1\)
\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=4\Rightarrow x=16\)
\(\sqrt{x}-3=2\Rightarrow\sqrt{x}=5\Rightarrow x=25\)
\(\sqrt{x}-3=4\Rightarrow\sqrt{x}=7\Rightarrow x=49\)
Vậy \(x=1;4;16;25;49\) thì A nguyên
Câu 2:
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+a+c+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}=1\div\dfrac{1}{2}=2\)
\(\Rightarrow P=2+2+2=6\)
Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0
2/ Ta có :
\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)
\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)
\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)
\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)
\(=1-1=0\)
Ta có: a+b-c/c = b+c-a/a = c+a-b/b = a+b-c+b+c-a+c+a-b/c+a+b
= a+b+c/a+b+c = 1 (Áp dụng tính chất dãy tỉ số bằng nhau)
Trường hợp 1 : Nếu a+b+c = 0 => a=0; b=0 ; c=0 => P =1
Trường hợp 2: Nếu a+b+c khác 0 => a+b+c = 1
=> a+b = 1-c => b+c = 1-a
=> a+c = 1-b
Ta lại có:
1-c-c/c =1 => 1- 2c/c =1 => 1-2c = c => 1 = 3c=> c= 1/3
1-a-c/a = 1 => 1- 2a/a=1 => 1-2a =a => 1 = 3a => a= 1/3
1-b-b/b = 1 => 1-2b/b = 1 => 1-2b = b => 1= 3b => b= 1/3
=> P= (1+ 1/3 : 1/3). (1+ 1/3 : 1/3). ( 1+ 1/3 :1/3)
= 2 . 2. 2 =8
Vậy P = 1 hoặc = 8
Lời giải \(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Ta có: \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
\(\Rightarrow\dfrac{a+b-c}{c}+2=\dfrac{b+c-a}{a}+2=\dfrac{c+a-b}{b}+2\)
\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Khi \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\Leftrightarrow B=\dfrac{-abc}{abc}=-1\)
Khi \(a=b=c\Leftrightarrow B=\dfrac{8abc}{abc}=8\)
a+b-c=c
b+c-a=a
c+a-b=b