Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(I=\int sinxdx-\frac{1}{2}\int e^{2x}d\left(2x\right)=-cosx-\frac{1}{2}e^{2x}+C\)
b/ Ko rõ đề
c/ Không rõ đề
d/ Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinx.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)
\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm:
\(1001x^2+1001z^2\geq 2\sqrt{1001x^2.1001z^2}=2|1001xz|\geq 2002xz\)
\(18x^2+\frac{25}{2}y^4\geq 2\sqrt{18x^2.\frac{25}{2}y^4}=2|15xy^2|\geq 30xy^2\)
\(\frac{3}{2}y^4+6z^2\geq 2\sqrt{\frac{3}{2}y^4.6z^2}=2|3y^2z|\geq 6y^2z\)
\(4y^4\geq 0\)
Cộng các BĐT trên theo vế, ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=0$
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm:
\(1001x^2+1001z^2\geq 2\sqrt{1001x^2.1001z^2}=2|1001xz|\geq 2002xz\)
\(18x^2+\frac{25}{2}y^4\geq 2\sqrt{18x^2.\frac{25}{2}y^4}=2|15xy^2|\geq 30xy^2\)
\(\frac{3}{2}y^4+6z^2\geq 2\sqrt{\frac{3}{2}y^4.6z^2}=2|3y^2z|\geq 6y^2z\)
\(4y^4\geq 0\)
Cộng các BĐT trên theo vế, ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=0$
a) Ta có \(\log_32<\log_33=1=\log_22<\log_23\)
b) \(\log_23<\log_24=2=\log_39<\log_311\)
c) Đưa về cùng 1 lôgarit cơ số 10, ta có
\(\frac{1}{2}+lg3=\frac{1}{2}lg10+lg3=lg3\sqrt{10}\)
\(lg19-lg2=lg\frac{19}{2}\)
So sánh 2 số \(3\sqrt{10}\) và \(\frac{19}{2}\) ta có :
\(\left(3\sqrt{10}\right)^2=9.10=90=\frac{360}{4}<\frac{361}{4}=\left(\frac{19}{2}\right)^2\)
Vì vậy : \(3\sqrt{10}<\frac{19}{2}\)
Từ đó suy ra \(\frac{1}{2}+lg3\)<\(lg19-lg2\)
d) Ta có : \(\frac{lg5+lg\sqrt{7}}{2}=lg\left(5\sqrt{7}\right)^{\frac{1}{2}}=lg\sqrt{5\sqrt{7}}\)
Ta so sánh 2 số : \(\sqrt{5\sqrt{7}}\) và \(\frac{5+\sqrt{7}}{2}\)
Ta có :
\(\sqrt{5\sqrt{7}}^2=5\sqrt{7}\)
\(\left(\frac{5+\sqrt{7}}{2}\right)^2=\frac{32+10\sqrt{7}}{4}=8+\frac{5}{2}\sqrt{7}\)
\(8+\frac{5}{2}\sqrt{7}-5\sqrt{7}=8-\frac{5}{2}\sqrt{7}=\frac{16-5\sqrt{7}}{2}=\frac{\sqrt{256}-\sqrt{175}}{2}>0\)
Suy ra : \(8+\frac{5}{2}\sqrt{7}>5\sqrt{7}\)
Do đó : \(\frac{5+\sqrt{7}}{2}>\sqrt{5\sqrt{7}}\)
và \(lg\frac{5+\sqrt{7}}{2}>\frac{lg5+lg\sqrt{7}}{2}\)
\(a,\int sin2x.cosxdx=\int\dfrac{1}{2}\left[sin3x+sinx\right]dx=\dfrac{1}{2}\int sin3xdx+\dfrac{1}{2}\int sinxdx=\dfrac{-1}{6}cos3x-\dfrac{1}{2}cosx\)
\(sin 2x-(2sin^2 x-sin2x-2sinx-1/2.\sin 2x+\cos^2x+\cos x-3\sin x-3\cos x+3)=0\)
\(5\sin x.\cos x+5\sin x+2\cos x-\sin^2x-4=0\)
\(\cos x(5\sin x+2)=\sin^2x-5\sin x+4=(\sin x-1)(\sin x -4)\)
Bình phương 2 vế suy ra
\((1-\sin^2 x)(5\sin x+2)^2=(1-\sin x)^2(\sin x-4)^2\)
TH1: \(\sin x=1\)
TH 2: \((1+\sin x)(5\sin x+2)^2=(1-\sin x)(\sin x-4)^2\)
\(\left|z\right|=1\Rightarrow z=cosx+i.sinx\)
\(z^3-z+2=cos3x+i.sin3x-cosx-i.sinx+2\)
\(=\left(cos3x-cosx+2\right)-i.\left(sin3x-sinx\right)\)
\(=\left(2-2sin2x.sinx\right)-i.2cos2x.sinx\)
\(=2\left[\left(1-sin2x.sinx\right)-i.cos2x.sinx\right]\)
\(\Rightarrow A=\left|z^3-z+2\right|=2\sqrt{\left(1-sin2x.sinx\right)^2+cos^22x.sin^2x}\)
\(A=2\sqrt{1-2sin2x.sinx+sin^22x.sin^2x+cos^22x.sin^2x}\)
\(A=2\sqrt{1-4sin^2x.cosx+sin^2x}\)
\(A=2\sqrt{1-4\left(1-cos^2x\right)cosx+1-cos^2x}\)
\(A=2\sqrt{4cos^3x-cos^2x-4cosx+2}\)
\(A_{max}\) khi \(4cos^3x-cos^2x-4cosx+2\) đạt max
Xét hàm \(f\left(t\right)=4t^3-t^2-4t+2\) trên \(\left[-1;1\right]\)
\(f'\left(t\right)=12t^2-2t-4=0\Rightarrow\left[{}\begin{matrix}t=-\frac{1}{2}\\t=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow f\left(t\right)\) đạt max tại \(t=-\frac{1}{2}\) hay \(A_{max}\) khi \(a=cosx=-\frac{1}{2}\)
\(\Rightarrow b^2=sin^2x=1-cos^2x=\frac{3}{4}\)
\(\Rightarrow P=2a+4b^2=-1+3=2\)
\(I_1=\int cos\left(\frac{\pi x}{2}\right)dx-\int\frac{2}{6x+5}dx=\frac{2}{\pi}\int cos\left(\frac{\pi x}{2}\right)d\left(\frac{\pi x}{2}\right)-\frac{1}{3}\int\frac{d\left(6x+5\right)}{6x+5}\)
\(=\frac{2}{\pi}sin\left(\frac{\pi x}{2}\right)-\frac{1}{3}ln\left|6x+5\right|+C\)
\(I_2=-\frac{1}{2}\int\left(4-x^4\right)^{\frac{1}{2}}d\left(4-x^4\right)=-\frac{1}{2}.\frac{\left(4-x^4\right)^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{-\sqrt{\left(4-x^4\right)^3}}{3}+C\)
\(I_3=2\int e^{\frac{1}{2}\left(4+x^2\right)}d\left(\frac{1}{2}\left(4+x^2\right)\right)=2e^{\frac{1}{2}\left(4+x^2\right)}+C=2\sqrt{e^{4+x^2}}+C\)
\(I_4=-\frac{1}{2}\int\left(1-x^2\right)^{\frac{1}{3}}d\left(1-x^2\right)=-\frac{1}{2}.\frac{\left(1-x^2\right)^{\frac{4}{3}}}{\frac{4}{3}}+C=-\frac{3}{8}\sqrt[3]{\left(1-x^2\right)^4}+C\)
\(I_5=\int e^{sinx}d\left(sinx\right)=e^{sinx}+C\)
\(I_6=\int\frac{d\left(1+sinx\right)}{1+sinx}=ln\left(1+sinx\right)+C\)
\(I_7=\int\left(x+1\right)\sqrt{x-1}dx\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow dx=2tdt\)
\(\Rightarrow I_7=\int\left(t^2+2\right).t.2t.dt=\int\left(2t^4+4t^2\right)dt=\frac{2}{5}t^5+\frac{4}{3}t^3+C\)
\(=\frac{2}{5}\sqrt{\left(1-x\right)^5}+\frac{4}{3}\sqrt{\left(1-x\right)^3}+C\)
\(I_8=\int\left(2x+1\right)^{20}dx\)
Đặt \(2x+1=t\Rightarrow2dx=dt\Rightarrow dx=\frac{1}{2}dt\)
\(\Rightarrow I_8=\frac{1}{2}\int t^{20}dt=\frac{1}{42}t^{21}+C=\frac{1}{42}\left(2x+1\right)^{21}+C\)
\(I_9=-3\int\left(1-x^3\right)^{-\frac{1}{2}}d\left(1-x^3\right)=-3.\frac{\left(1-x^3\right)^{\frac{1}{2}}}{\frac{1}{2}}+C=-6\sqrt{1-x^3}+C\)
\(I_{10}=\int\frac{x}{\sqrt{2x+3}}dx\)
Đặt \(\sqrt{2x+3}=t\Rightarrow x=\frac{1}{2}t^2-\frac{3}{2}\Rightarrow dx=t.dt\)
\(\Rightarrow I_{10}=\int\frac{\frac{1}{2}t^2-\frac{3}{2}}{t}.t.dt=\frac{1}{2}\int\left(t^2-3\right)dt=\frac{2}{3}t^3-\frac{3}{2}t+C\)
\(=\frac{2}{3}\sqrt{\left(2x+3\right)^3}-\frac{3}{2}\sqrt{2x+3}+C\)
Bài 1)
Gọi số phức $z$ có dạng \(z=a+bi(a,b\in\mathbb{R})\).
Ta có \(|z|+z=3+4i\Leftrightarrow \sqrt{a^2+b^2}+a+bi=3+4i\)
\(\Rightarrow\left\{\begin{matrix}\sqrt{a^2+b^2}+a=3\\b=4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=\frac{5}{6}\\b=4\end{matrix}\right.\)
Vậy số phức cần tìm là \(\frac{5}{6}+4i\)
b)
\(\left\{\begin{matrix} z_1+3z_1z_2=(-1+i)z_2\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{z_1}{z_2}+3z_1=-1+i\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \frac{z_1}{z_2}+z_1+z_2=(-1+i)-(3+2i)=-4-i\)
\(\Leftrightarrow w=-4-i\Rightarrow |w|=\sqrt{17}\)
1, Đổi chỗ 3 viên ở 3 đỉnh tam giác: viên dưới cùng lên đỉnh trên cùng, 2 viên ngoài cùng ở 2 bên đảo xuốn đáy
2, 8-6+2=4; 12-5+8=15; 13-10+15=18. x=15
3,
*) \(5^3+5=130;3^3+3=30;2^3+2=10;1^3+1=2\)
*) 2+3=8 hay 2.(2+3)-2=8
4+5=32 hay 4.(4+5)-4=32
5+8=60 hay 5.(5+8)-5=60
6+7=72 hay 6.(6+7)-6=72
7+8= 7.(7+8)-7=98
Gọi \(M\left(x_0;y_0\right)\)là tiếp điểm. Ta có : \(y'=-3x^2+3\)
a) Vì tiếp tuyến vuông góc với đường thẳng \(x+y-1=0\Rightarrow y=-x+1\) nên ta có :
\(y'\left(x_0\right)=1\Leftrightarrow-3x^2_0+3=1\Leftrightarrow x_0=\pm\frac{\sqrt{6}}{3}\)
* \(x_0=\frac{\sqrt{6}}{3}\Rightarrow y_0=\frac{18+7\sqrt{6}}{9}\) nên ta có phương trình tiếp tuyến
\(y=\left(x-\frac{\sqrt{6}}{3}\right)+\frac{18+7\sqrt{6}}{9}=x+\frac{18+7\sqrt{6}}{9}\)
* \(x_0=-\frac{\sqrt{6}}{3}\Rightarrow y_0=\frac{18-7\sqrt{6}}{9}\) nên ta có phương trình tiếp tuyến
\(y=\left(x+\frac{\sqrt{6}}{3}\right)+\frac{18-7\sqrt{6}}{9}=x+\frac{18-7\sqrt{6}}{9}\)
Vì \(\Delta\) tạo với \(\Delta'\) một góc bằng \(45^0\) nên \(\frac{\left|k-1\right|}{\sqrt{k^2+1}.\sqrt{2}}=\frac{\sqrt{2}}{2}\Leftrightarrow k=0\)
Ta có \(f'\left(x_0\right)=k\Leftrightarrow-3x^2_0+3=0\Leftrightarrow x_0=\pm1\)
* \(x_0=1\Rightarrow y_0=4\Rightarrow\Delta:y-4=0\)
* \(x_0=-1\Rightarrow y_0=-2\Rightarrow\Delta:y+2=0\)
dhyjjdttytytyuryyruuuuuuuuuuuftr