K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2022

2,25 + x = 3,76 - 5,49

2,25 + x = -1,73

           x = (-1,73) - 2,25

           x = 0,52 .

19 tháng 6 2017

a3+b3+c3=3abc

<=>(a+b)3-3ab(a+b)-3abc+c3=0

<=>(a+b+c)[(a+b)2-(a+b)c+c2]-3ab.(a+b+c)=0

<=>(a+b+c)(a2+b2+c2-ab-bc-ac)=0

<=>(a+b+c)(2a2+2b2+2c2-2ab-2bc-2ac)=0

<=>(a+b+c)[(a-b)2+(b-c)2+(c-a)2]=0

<=>a+b+c=0 [(a-b)2+(b-c)2+(c-a)2 khác 0]

=>a2+b2-c2=-2ab;b2+c2-a2=-2bc;c2+a2-b2=-2ac

Suy ra : P=\(-\left(\dfrac{1}{2ab}+\dfrac{1}{2bc}+\dfrac{1}{2ac}\right)=-\dfrac{a+b+c}{2abc}=0\)

5 tháng 11 2019

1 tấn +100km3+1km2+1000m=

giúp mình với help me

5 tháng 11 2019

ko cùng đơn vị sao tính nhỉ gunny

NV
10 tháng 5 2021

Đề bài sai/thiếu, biểu thức này không thể tồn tại max nếu x; y chỉ là số thực (lấy ví dụ, \(x=y=-1000\), như vậy \(2x+3y< 0\le7\) phù hợp điều kiện, nhưng P lại ra 1 kết quả khổng lồ)

P chỉ tồn tại max khi x; y có thêm điều kiện (ví dụ x; y dương hoặc không âm)

Khi đó: \(2x+3y\le7\Rightarrow3y\le7-2x\Rightarrow y\le\dfrac{7}{3}-\dfrac{2}{3}x\)

Từ đó ta có:

\(P=x+y\left(x+1\right)\le x+\left(\dfrac{7}{3}-\dfrac{2}{3}x\right)\left(x+1\right)\)

\(\Rightarrow P\le-\dfrac{2}{3}x^2+\dfrac{8}{3}x+\dfrac{7}{3}=-\dfrac{2}{3}\left(x-2\right)^2+5\le5\)

\(P_{max}=5\) khi \(\left(x;y\right)=\left(2;1\right)\)

21 tháng 8 2021

a. \(x=\left\{4;9;16\right\}\)

b. \(x=1\)

c. \(x=\left\{-2;-1\right\}\)

21 tháng 8 2021

giải ra giúp mình với 

NV
6 tháng 4 2021

\(P=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\Rightarrow P^2=\dfrac{x^2}{y}+\dfrac{y^2}{x}+2\sqrt{xy}\)

\(P^2=\left(\dfrac{x^2}{y}+\sqrt{xy}+\sqrt{xy}\right)+\left(\dfrac{y^2}{x}+\sqrt{xy}+\sqrt{xy}\right)-2\sqrt{xy}\)

\(P^2\ge3x+3y-2\sqrt{xy}\ge3\left(x+y\right)-\left(x+y\right)=2\left(x+y\right)=4038\)

\(\Rightarrow P\ge\sqrt{4038}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{2019}{2}\)

6 tháng 4 2021

Ta có:

\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{y-2019}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\ge\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

Lại có:

\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}=\dfrac{2019-y}{\sqrt{y}}+\dfrac{2019-x}{\sqrt{x}}\\ =\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)

\(\Rightarrow2P=\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}=2019\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\ge2019\cdot\dfrac{2}{\sqrt[4]{xy}}\\ \ge2019\dfrac{2}{\sqrt[2]{\dfrac{x+y}{2}}}=2019\cdot\dfrac{2}{\sqrt{\dfrac{2019}{2}}}=2\sqrt{2}\sqrt{2019}\)

\(\Rightarrow P\ge\sqrt{2}\sqrt{2019}\)

Dấu = khi \(x=y=\dfrac{2019}{2}\)

15 tháng 1 2021

Ta có \(\sqrt{x}-\sqrt{x-1}< \dfrac{1}{100}\Leftrightarrow\dfrac{1}{\sqrt{x}+\sqrt{x-1}}< \dfrac{1}{100}\Leftrightarrow\sqrt{x}+\sqrt{x-1}>100\).

Đến đây dùng pp kẹp ta tìm được số nguyên dương x nhỏ nhất thỏa mãn là x = 2501.

 

NV
21 tháng 4 2021

\(y\ge\dfrac{8-x}{x+1}\Rightarrow P\ge4x+\dfrac{8-x}{x+1}+3=\dfrac{4x^2+6x+11}{x+1}=\dfrac{4x^2-4x+1+10\left(x+1\right)}{x+1}=\dfrac{\left(2x-1\right)^2}{x+1}+10\ge10\)

\(P_{min}=10\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};5\right)\)