K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

A=4(3^2+1)(3^4+1)(3^8+1)...(3^64+1)

2A=8(3^2+1)(3^4+1)(3^8+1)...(3^64+1)

2A=(3^2-1)(3^2+1)(3^4+1)(3^8+1)...(3^64+1)

2A=(3^4-1)(3^4+1)(3^8+1)...(3^64+1)

2A=(3^8-1)(3^8+1)....(3^64+1)

2A=(3^16-1)...(3^64+1)

......

2A=(3^64-1)(3^64+1)

2A=3^128-1

A=(3^128-1)/2

=> A>B

10 tháng 6 2016

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow4A=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow4A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow4A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow4A=\left(3^{16}-1\right)\left(3^{16}+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow4A=\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(\Leftrightarrow4A=\left(3^{64}-1\right)\left(3^{64}+1\right)\Leftrightarrow4A=3^{128}-1\Leftrightarrow A=\frac{3^{128}-1}{4}\)

Ta có \(\frac{3^{128}-1}{4}< 3^{128}-1\Rightarrow A< B\)

Lâm Huyền:Bạn sai đề rồi B phải là 3128-1 chứ !

27 tháng 10 2020

Ta có A = (32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)(364 + 1)

=> 8A = 8(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)(364 + 1)

=> 8A = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)(364 + 1)

=> 8A = (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)(364 + 1)

=> 8A = (38 - 1)(38 + 1)(316 + 1)(332 + 1)(364 + 1)

=> 8A = (316 - 1)(316 + 1)(332 + 1)(364 + 1)

=> 8A = (332 - 1)(332 + 1)(364 + 1)

=> 8A = (364 - 1)(364 + 1)

=> 8A = 3128 - 1 (1)

Đặt B = 3126

=> 8B = 3126 . 8 = 3126.(32 - 1) = 3128 - 3126 (2)

Từ (1)(2) => 8A > 8B 

=> A > B 

3 tháng 6 2015

A=4(32+1)(34+1)(38+1)...(364+1)

=>2A=8(32+1)(34+1)(38+1)....(364+1)

=(32-1)(32+1)(34+1)(38+1).....(364+1)

=(34-1)(34+1)(38+1)....(364+1)

=(38-1)(38+1).....(364+1)

tương tự như thế ta được

2A=3128-1

=>A\(\frac{3^{128}-1}{2}\)

=>B>A

6 tháng 7 2016

\(S=4\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

\(\left(3^2-1\right)S=4\cdot\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

\(8S=4\cdot\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

\(2S=\left(3^8-1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

...

\(2S=3^{128}-1\)

Vậy S < 3128 - 1

28 tháng 9 2018

Xét biểu thức A

\(A=8\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(...=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1\)

Vậy \(A=B\)

12 tháng 9 2019

\(A=3+5+...+199>1=B\)

12 tháng 9 2019

Làm dễ hiểu chút

\(A=\left(2^2+4^2+...+100^2\right)-\left(1^2+3^2+...+99^2\right)\)

\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)

\(=\left(2+1\right)\left(2-1\right)+\left(4+3\right)\left(4-3\right)+...+\left(100-99\right)\left(99+100\right)\)

\(=3+7+...+199\)

\(B=3^8.7^8-\left(21^4-1\right)\left(21^4+1\right)\)

\(=21^8-\left(21^8-1\right)=1\)

Vậy A > B

3 tháng 10 2015

2A=8(32+1)(34+1)......(364+1)

2A=(32-1)(32+1)(34+1)......(364+1)

2A=(34-1)((34+1)....(364+1)

2A=(364-1)(364+1)

2A=3128-1

Ta có :2A=B=>A<B